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Disclaimer

This document was developed by Abt Associates Inc. under technical direction from U.S. EPA’s
Office of Air Quality Planning and Standards.  The analysis and conclusions presented in this report are
those of the authors and should not be interpreted as necessarily reflecting the official views or policies of
the U.S. EPA.  The analysis is useful to derive estimates of air quality, costs, benefits, and/or economic
impacts.  However, the analysis inputs and outputs associated with any emissions source, county, or local
area are subject to significant uncertainties and should not be used to predict attainment status, costs,
benefits, and/or economic impacts at this level of detail.



Acknowledgements

The Work Assignment Manager, Bryan Hubbell, as well as Tyler Fox and Norm Possiel of the
U.S. Environmental Protection Agency, provided a variety of constructive suggestions, comments, and
technical direction at all stages of work on this report.



Final Heavy Duty Engine/Diesel Fuel Rule: Air
Quality Estimation, Selected Health

And Welfare Benefits Methods, and Benefit Analysis
Results



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

2 Development of Ozone And PM Air Quality Inputs For Use in the Benefits Analysis . . . . . . . 2-1
2.1 Ozone Air Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.2 PM Air Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

3 General Issues in Estimating Health and Welfare Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1 Estimating Adverse Health Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.1.1 Basic Concentration-Response Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1.2 Calculation of Adverse Health Effects with CAPMS . . . . . . . . . . . . . . . . . . . 3-3
3.1.3 Population Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3.1.4 Overlapping Health Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
3.1.5 Baseline Incidences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.1.6 Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.1.7 Application of a Single C-R Function Everywhere . . . . . . . . . . . . . . . . . . . . 3-8
3.1.8 Estimating Pollutant-Specific Benefits Using Single Pollutant vs. Multi-Pollutant

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
3.1.9 Pooling Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

3.2 Valuing Changes in Health And Welfare Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
3.2.1 WTP Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
3.2.2 Change Over Time in WTP in Real Dollars . . . . . . . . . . . . . . . . . . . . . . . . 3-13
3.2.3 Adjusting Benefits Estimates from 1990 Dollars to 1999 Dollars . . . . . . . . . 3-14
3.2.4 Aggregation of Monetized Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16

3.3 Characterization of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
3.3.1 Alternative and Supplementary Calculations . . . . . . . . . . . . . . . . . . . . . . . . 3-22
3.3.2 Sensitivity Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
3.3.3 Statistical Uncertainty Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
3.3.4 Unquantified Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28

4 Health Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1 Premature Mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

4.1.1 Short-Term Versus Long-Term Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4.1.2 Degree of Prematurity of Mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
4.1.3 Estimating PM-Related Premature Mortality . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
4.1.4 Valuing Premature Mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

4.2 Chronic Illness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
4.2.1 Chronic Bronchitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
4.2.2 Sensitivity Calculation:  Chronic Asthma . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

4.3 Hospital Admissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
4.3.1 PM-Related Respiratory and Cardiovascular Hospital Admissions . . . . . . . 4-22
4.3.2 Ozone-Related Respiratory and Cardiovascular Hospital Admissions . . . . . 4-23
4.3.3 Pooling the Results of More Than One Study . . . . . . . . . . . . . . . . . . . . . . . 4-24
4.3.4 Valuing Respiratory and Cardiovascular Hospital Admissions . . . . . . . . . . 4-25
4.3.5 Asthma-Related Emergency Room (ER) Visits . . . . . . . . . . . . . . . . . . . . . . 4-28

4.4 Acute Illnesses and Symptoms Not Requiring Hospitalization . . . . . . . . . . . . . . . . . 4-29
4.4.1 Acute Bronchitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30
4.4.2 Upper Respiratory Symptoms (URS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31



4.4.3 Lower Respiratory Symptoms (LRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33
4.4.4 Minor Restricted Activity Days (MRADs) Adjusted for Asthma Attacks . . . 4-36
4.4.5 Asthma Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
4.4.6 Work Loss Days (WLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37
4.4.7 Worker Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38
4.4.8 Supplemental Endpoints:  Acute Illnesses And Symptoms Not Requiring

Hospitalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39

5 Welfare Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1 Visibility Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.1.1 Basic Utility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.1.2 Measure of Visibility: Environmental “Goods” Versus “Bads” . . . . . . . . . . . 5-3
5.1.3 Estimating the Parameters for Visibility at Class I Areas: the (’s and *’s . . . 5-5
5.1.4 Estimating the Parameter for Visibility in Residential Areas: 2 . . . . . . . . . . 5-13
5.1.5 Putting it All Together:  the Household Utility and WTP Functions . . . . . . . 5-13

5.2 Agricultural Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
5.2.1 Exposure-Response Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
5.2.2 Estimation of Yield Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
5.2.3 AGSIM© Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17

5.3 Consumer Cleaning Cost Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27

6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

Appendix A:  Results for Supplementary Calculations and Sensitivity Analyses . . . . . . . . . . . . . . . . . A-1

Appendix B:  Ozone Concentration-response Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
B.1 Short-term Ozone-related Mortality (Four U.s. Studies) . . . . . . . . . . . . . . . . . . . . . . . B-1

B.1.1 Short-Term Mortality (U.S.) (Ito and Thurston, 1996) . . . . . . . . . . . . . . . . . B-1
B.1.2 Short-Term Mortality (U.S.) (Kinney et al., 1995) . . . . . . . . . . . . . . . . . . . . B-1
B.1.3 Short-Term Mortality (U.S.) (Moolgavkar et al., 1995) . . . . . . . . . . . . . . . . . B-2
B.1.4 Short-Term Mortality (U.S.) (Samet et al., 1997) . . . . . . . . . . . . . . . . . . . . . B-3

B.2 Chronic Illness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4
B.2.1 Asthma Adult Onset (McDonnell et al., 1999) . . . . . . . . . . . . . . . . . . . . . . . . B-4

B.3 Hospital Admissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5
B.3.1 Hospital Admissions for Asthma (Burnett et al., 1999, Toronto) . . . . . . . . . . B-5
B.3.2 Hospital Admissions for Obstructive Lung Disease (Burnett et al., 1999, Toronto)B-6
B.3.3 Hospital Admissions for Respiratory Infection (Burnett et al., 1999, Toronto)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
B.3.4 Hospital Admissions for All Respiratory (Burnett et al., 1997, Toronto) . . . . B-8
B.3.5 Hospital Admissions for All Respiratory (Thurston et al., 1994, Toronto) . . . B-9
B.3.6 Hospital Admissions for Pneumonia (Moolgavkar et al., 1997, Minneapolis)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-10
B.3.7 Hospital Admissions for COPD (Moolgavkar et al., 1997, Minneapolis) . . . B-11
B.3.8 Hospital Admissions for Pneumonia (Schwartz, 1994a, Minneapolis) . . . . . B-12
B.3.9 Hospital Admissions for Pneumonia (Schwartz, 1994b, Detroit) . . . . . . . . . B-13
B.3.10 Hospital Admissions for COPD (Schwartz, 1994b, Detroit) . . . . . . . . . . . . B-13
B.3.11 Hospital Admissions for All Respiratory (Schwartz, 1995, New Haven) . . . B-14
B.3.12 Hospital Admissions for All Respiratory (Schwartz, 1995, Tacoma) . . . . . . B-15
B.3.13 Hospital Admissions for Dysrhythmias (Burnett et al., 1999, Toronto) . . . . B-16



B.4 Emergency Room Visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-17
B.4.1 Emergency Room Visits for Asthma (Cody et al., 1992, Northern NJ) . . . . . B-18
B.4.2 Emergency Room Visits for Asthma (Weisel et al., 1995, Northern NJ) . . . . B-18
B.4.3 Emergency Room Visits for Asthma (Stieb et al., 1996, New Brunswick) . . B-20

B.5 Acute Morbidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-20
B.5.1 Asthma Attacks: Whittemore and Korn (1980) . . . . . . . . . . . . . . . . . . . . . . B-20
B.5.2 Minor Restricted Activity Days: Ostro and Rothschild (1989) . . . . . . . . . . . B-22
B.5.3 Worker Productivity: Crocker and Horst (1981) . . . . . . . . . . . . . . . . . . . . . B-23
B.5.4 Any of 19 Respiratory Symptoms: Krupnick (1990) . . . . . . . . . . . . . . . . . . B-23

Appendix C:  Particulate Matter C-R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
C.1 Mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

C.1.1 Mortality (Krewski et al., 2000) Based on ACS Cohort: Mean PM2.5 . . . . . . . C-1
C.1.2 Mortality (Krewski et al., 2000), Based on ACS Cohort: Median PM2.5 . . . . . C-2
C.1.3 Mortality (Krewski et al., 2000), Based on ACS Cohort, Random Effects with

Regional Adjustment: Median PM2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3
C.1.4 Mortality (Krewski et al., 2000), Based on ACS Cohort, Random Effects with

Independent Cities: Median PM2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4
C.1.5 Mortality (Pope et al., 1995), Based on ACS Cohort: Median PM2.5 . . . . . . . C-5
C.1.6 Mortality  (Krewski et al., 2000), Based on Six-City Cohort: Mean PM2.5 . . . C-6
C.1.7 Mortality (Dockery et al., 1993), Based on Six-City Cohort: Mean PM2.5 . . . C-7
C.1.8 Short-Term Mortality (Schwartz et al., 1996) . . . . . . . . . . . . . . . . . . . . . . . . C-8
C.1.9 Neonatal Mortality (Woodruff et al., 1997) . . . . . . . . . . . . . . . . . . . . . . . . . . C-8

C.2 Chronic Morbidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-10
C.2.1 Chronic Bronchitis (Schwartz, 1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-10
C.2.2 Chronic Bronchitis (Abbey et al., 1995b, California) . . . . . . . . . . . . . . . . . . C-12

C.3 Hospital Admissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-13
C.3.1 Hospital Admissions for COPD (Samet et al., 2000a, 14 Cities) . . . . . . . . . C-14
C.3.2 Hospital Admissions for Pneumonia (Samet et al., 2000a, 14 Cities) . . . . . . C-16
C.3.3 Hospital Admissions for Asthma (Sheppard et al., 1999, Seattle) . . . . . . . . C-17
C.3.4 Hospital Admissions for Cardiovascular Disease (Samet et al., 2000a, 14 Cities)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-18
C.4 Emergency Room Visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-19

C.4.1 Emergency Room Visits for Asthma (Schwartz et al., 1993, Seattle) . . . . . . C-19
C.5 Acute Morbidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-20

C.5.1 Acute Bronchitis C-R Function (Dockery et al., 1996) . . . . . . . . . . . . . . . . C-21
C.5.2 Upper Respiratory Symptoms (Pope et al., 1991) . . . . . . . . . . . . . . . . . . . . C-22
C.5.3 Lower Respiratory Symptoms (Schwartz et al., 1994) . . . . . . . . . . . . . . . . . C-23
C.5.4 Asthma Attacks: Whittemore and Korn (1980) . . . . . . . . . . . . . . . . . . . . . . C-25
C.5.5 Work Loss Days (Ostro, 1987) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-26
C.5.6 Minor Restricted Activity Days (Ostro and Rothschild, 1989) . . . . . . . . . . . C-27
C.5.7 Any of 19 Respiratory Symptoms (Krupnick et al., 1990) . . . . . . . . . . . . . . C-29
C.5.8 Shortness of Breath (Ostro et al., 1995) . . . . . . . . . . . . . . . . . . . . . . . . . . . C-32
C.5.9 Moderate (or Worse) Asthma (Ostro et al., 1991) . . . . . . . . . . . . . . . . . . . . C-33



List of Exhibits

Exhibit 3-1  Bases of Benefits Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Exhibit 3-2  Consumer Price Indexes Used to Adjust WTP-Based and Cost-of-Illness-Based Benefits

Estimates from 1990 Dollars to 1999 Dollars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
Exhibit 3-3  Key Sources of Uncertainty in the Benefit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
Exhibit 3-4  Alternative and Supplemental Benefits Calculations for the HD Engine/Diesel Fuel Rule  2030

Control Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
Exhibit 3-5  Sensitivity Analyses for the HD Engine/Diesel Fuel  Rule 2030 Control Scenario . . . . . 3-27
Exhibit 4-1  PM-Related Health Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Exhibit 4-2  Ozone-Related Health Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Exhibit 4-3  Unit Values for Economic Valuation of Health Endpoints (1999 $) . . . . . . . . . . . . . . . . . 4-4
Exhibit 4-4  Mortality Lag Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Exhibit 4-5  Summary of Mortality Valuation Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Exhibit 4-6  Potential Sources of Bias in Estimates of Mean WTP to Reduce the Risk of PM Related

Mortality Based on Wage-Risk Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Exhibit 4-7  Chronic Bronchitis Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
Exhibit 4-8  Respiratory Hospital Admission Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
Exhibit 4-9  Cardiovascular Hospital Admission Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
Exhibit 4-10  Unit Values for Respiratory Hospital Admissions* . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Exhibit 4-11  Unit Values for Cardiovascular Hospital Admissions* . . . . . . . . . . . . . . . . . . . . . . . . . 4-28
Exhibit 4-12  Asthma-Related Emergency Room Visit Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29
Exhibit 4-13  Studies of Symptoms/Illnesses Not Requiring Hospitalization . . . . . . . . . . . . . . . . . . . 4-30
Exhibit 4-14  Median WTP Estimates and Derived Midrange Estimates (in 1999 $) . . . . . . . . . . . . . 4-32
Exhibit 4-15  Estimates of MWTP to Avoid Upper Respiratory Symptoms (1999 $) . . . . . . . . . . . . . 4-32
Exhibit 4-16  Estimates of MWTP to Avoid Lower Respiratory Symptoms (1999 $) . . . . . . . . . . . . 4-34
Exhibit 4-17  Comparison of the Means of Discrete and Continuous Uniform Distributions of MWTP

Associated with URS and LRS (1990 $) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36
Exhibit 5-1  Available Information on WTP for Visibility Improvements in National Parks . . . . . . . . . 5-6
Exhibit 5-2  Summary of Region-Specific Recreational Visibility Parameters to be Estimated in Household

Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Exhibit 5-3  Ozone Exposure-Response Functions for Selected Crops (SUM06) . . . . . . . . . . . . . . . . 5-15
Exhibit 6-1  Baseline Percentages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Exhibit 6-2  Estimated PM-Related Health and Welfare Benefits Associated with Air Quality Changes

Resulting from the HD Engine/Diesel Fuel  Rule 2030 Control Scenario . . . . . . . . . . . . . . . . 6-3
Exhibit 6-3  Estimated Ozone-Related Health and Welfare Benefits Associated with Air Quality Changes

Resulting from the HD Engine/Diesel Fuel  Rule 2030 Control Scenario . . . . . . . . . . . . . . . . 6-4
Exhibit 6-4  Alternative Benefit Calculations for the HD Engine/Diesel Fuel Rule 2030 Control Scenario

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Exhibit 6-5  Measures of Aggregate Uncertainty in the Benefits Analysis . . . . . . . . . . . . . . . . . . . . . . 6-6
Exhibit A-1  Supplemental Benefit Estimates for the 2030 Control Scenario . . . . . . . . . . . . . . . . . . . . A-1
Exhibit A-2  Sensitivity Analysis Results for the 2030 Control Scenario . . . . . . . . . . . . . . . . . . . . . . . A-1
Exhibit A-3  Sensitivity Analysis: Effect of Thresholds on Estimated PM-Related Mortality Based on

Krewski et al. (2000) - Mean, All-Cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Exhibit A-4  Alternative Mortality Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
Exhibit A-5  Underlying Estimates and Weights for Pooled Estimate of PM-Related Chronic Bronchitis

Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
Exhibit A-6  Underlying Estimates and Weights for Pooled Estimate of Ozone-Related Respiratory

Hospital Admissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4



Abt Associates Inc. December 20001-1

Exhibit A-7  Underlying Estimates and Weights for Pooled Estimate of Ozone-Related Asthma ER Visits
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4

1 Introduction

As part of EPA’s comprehensive national control program to regulate the heavy-duty vehicle and
its fuel as a single system program, new emission standards to be applied to heavy-duty highway engines
and vehicles will begin to take effect in 2007.  These standards are based on the use of high-efficiency
catalytic exhaust emission control devices or comparably effective advanced technologies.  Because these
devices are damaged by sulfur, EPA is also significantly reducing  the level of sulfur in highway diesel fuel
by mid-2006.  This program will result in emission levels of particulate matter (PM) and oxides of nitrogen
that are 90% and 95%, respectively, below current standards levels.  In order to meet these more stringent
standards for diesel engines, the program calls for a 97% reduction in the sulfur content of diesel fuel. This
analysis presents estimates of the potential benefits from the Heavy Duty (HD) Engine/Diesel Fuel rule
occurring in 2030.

Chapter 2 describes the methods used to estimate changes in ozone and particulate matter (PM)
concentrations and changes in visibility.  Chapter 3 describes general issues arising in estimating and
valuing changes in adverse health and welfare effects associated with changes in ozone, PM, and visibility. 
Chapter 4 describes in some detail the methods used for estimating and valuing adverse health effects,
while Chapter 5 describes the methods used for welfare effects: crop damage, visibility, and household
soiling.  The results of these analyses follow in Chapter 6.

This document has three appendices.  Appendix A presents the physical and monetary benefits
associated with sensitivity and alternative calculations for the HD Engine/Diesel Fuel Rule 2030 control
scenario not considered in the primary analysis.   Appendix B presents the ozone C-R functions used in this
analysis, and Appendix C presents the PM C-R functions.



1 CAPMS does not model individual exposures to these pollutants.

2The edge of the modeling domain has missing data, so the domain with actual observations extends from longitude -98.5E
to -67.5E and latitude 26.33E to 46.67E.

3 EPA has a direct link to the AIRS database: http://www.epa.gov/airs/; however, the data used in this analysis were
downloaded from the (password-protected) mainframe version of AIRS, available at: epaibm.rtpnc.epa.gov.  Both sets of data are
identical; the mainframe allows larger data queries.
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2 Development of Ozone And PM Air Quality Inputs For Use in the
Benefits Analysis

This chapter describes the methods used to forecast changes in ozone and PM.  We use two types
of air quality models to make these forecasts.  The following sub-sections summarize how we use air
quality model results in conjunction with the Criteria Air Pollutant Modeling System (CAPMS) to estimate
ozone and PM exposure.

CAPMS is a population-based system for modeling exposures of populations to ambient levels of
criteria air pollutants that we use to estimate health benefits.1 CAPMS divides the United States into eight
kilometer by eight kilometer grid cells, and estimates the changes in incidence of adverse health and welfare
effects associated with given changes in air quality in each grid cell.  We then calculate the national
incidence change as the sum of grid-cell-specific changes.

2.1 Ozone Air Quality

To develop baseline and control forecasts for ozone, we use the results of the variable-grid Urban
Airshed Model (UAM-V) and observed ozone season data for 1995.  The modeling data are used to
generate “adjustment factors” that quantify the relationship between modeled levels of ozone in the Eastern
U.S. for the base year, 1995, and the future year, 2030.  We combine the adjustment factors with actual
monitoring data to generate estimates of the future-year levels of ozone.  Note that we do not use the
modeling data directly to estimate future-year ozone levels.  Instead, we use them in a relative sense to
simply adjust actual monitor levels.  We use the modeling results in a relative sense because it provides a
better estimate than the UAM-V modeling data alone.  In particular, UAM-V has difficulty modeling night-
time hours.

The modeling domain is bounded by longitude -99E to -67E and latitude 26E to 47E.2  This
corresponds to the area that is east of a line running from central South Dakota through central Texas;
small portions of the Eastern U.S. are not covered by the UAM-V modeling, such as in northern Maine.  In
areas outside the modeling domain, we assume that ozone levels in the control scenario are identical with
those in the baseline scenario.  The three simulation periods for the eastern U.S. are based on meteorology
for June 15-24, July 8-15, and August 10-21, 1995, and are based on an emission inventory for 1996.

We collected ozone monitoring data for the ozone season, defined for this analysis as May through
September.3  An ozone monitor record was considered complete if data were available for 50 percent of
days in a given season.  Each of these days in turn had to have at least nine hourly observations between
8:00am and 7:59pm.



4 The data format of Eastern UAM-V modeled hourly output presents all grid cell data starting at 12:00 am..  In processing
of data, a correction was encoded to ensure that calculations were based on 8:00 am to 7:59 pm of the appropriate local time zone of
the grid cell.

5The use of more adjustment factors is generally considered desirable because it provides flexibility; however, it can lead to
unreasonably large adjustment factors for lower ozone values, unless a threshold is used (e.g., one ppb as used in this analysis). 

Abt Associates Inc. December 20002-2

*

*

*

*
*

*

*

*

#

# = CAPMS Grid Center

* = Monitor

In calculating adjustment factors, the UAM-V modeled hourly values from 8:00 am to 7:59 pm are
sorted by concentration level for the base-year and the future-year.4  For each set of modeled data, we split
evenly the ordered hourly values into the ten rank-ordered deciles,5  selecting the average of hourly values
in each decile as the representative value for that decile.  This means that the first decile's representative
ozone level equals the average of values within that decile, and so on for the other deciles.  We then
calculate the decile adjustment factors as the ratio of the UAM-V future-year scenario's decile to the
corresponding UAM-V base-year's decile.  We do similar calculations when determining the decile
adjustment factors for the future baseline and for the control scenarios.

We use enhanced Voronoi Neighbor Averaging (eVNA) to interpolate air quality at every
population grid cell by first identifying the set of monitors that best “surround” the center of the grid cell. 
We consider each CAPMS grid-cell separately, and identify the monitors that are close to the center of the
grid-cell.

In particular, we identify the nearest monitors, or “neighbors,” by drawing a polygon, or “Voronoi”
cell, around the center of each CAPMS grid cell.  The polygons have the special property that the
boundaries of the polygon are as close as possible to the center of the CAPMS grid cell and that all of the
points on each boundary are the same distance from the center of the cell and the monitor sharing this
boundary.
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We calculate an inverse-distance weight for each of these monitors, including those monitors that
share a boundary with a CAPMS grid cell in the subset of monitors that best surround the center of the grid
cell.

We then combine the weights with the decile adjustment factors and the ozone monitoring data, to
calculate hourly ozone values at each CAPMS grid cell in the Eastern U.S.:

where:
CAPMS celli,j,k,2030   = predicted concentration at CAPMS cell i, decile group j, hourly observation k
UAMVi,,j,2030 = average UAMV modeled 2030 concentration in decile group j of model gridcell closest

to CAPMS cell i
N = number of neighboring monitors for CAPMS gridcell i
monh,j,k,1995 = observed 1995 ozone level at monitor h, decile group j, hourly observation k
UAMVh,j,1995 = average UAMV modeled 1995 concentration in decile group j of model gridcell closest

to monitor h
dh,i = inverse-distance weight for cell i to monitor h .
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The hourly ozone value assigned to each CAPMS gridcell is basically a distance-weighted average
of adjusted ozone levels from nearby ozone monitors, where we adjust each of the monitor values with the
ratio of UAM-V predictions at the CAPMS cell location and UAM-V predictions at the monitor.

For example consider the following situation where we have three monitors that are the nearest
neighbor to a CAPMS grid-cell.  We focus on one CAPMS grid-cell whose centered we marked with “#.”
Around this are nine UAM-V cells labeled A through I, with values in parts per billion (ppb); UAM-V cell
“E” contains the CAPMS grid-cell of interest.  And there are three monitors labeled 1 through 3; we mark
each with a “*” and include the distance to the CAPMS grid-cell.

In the enhanced VNA (eVNA) method, we incorporate UAM-V modeling information by including
adjustment factors (i.e., E/C; E/D, and E/I) based on the direct air quality model results:
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Using the numbers in the table, the estimated air quality at the CAPMS grid-cell would be:

The final step in the calculation is to include the inverse-distance weights di,1, di,2, and di,3.  The
further the monitor is from the CAPMS grid-cell, the smaller the weight.  In this example, we calculate di,1

as follows:

Using the same type of calculation, we find the weights for di,2 = 0.34 and di,3 = 0.39, and as
expected, the weights sum to one.  We can then finish the calculation:

After calculating both baseline and control hourly ozone levels at each CAPMS gridcell, we then
calculate the ozone measures that are needed to estimate adverse health effects.  For example, a number of
studies use the 24-hour daily average ozone level, so for each CAPMS gridcell we get 2030 baseline and
control estimates for the 24-hour daily average.

To reduce computational time when estimating the change in health effects associated with daily
ozone levels, CAPMS approximates a season's worth of daily ozone measures at each CAPMS gridcell by
20 “bins.”  Each bin represents five percent of the daily ozone concentrations, and the value for each bin is
set at the midpoint of the percentile range it represents.  The first bin represents the first (lowest) five
percent of the distribution of daily ozone values, and is set at the 2.5th percentile value; the second bin
represents the next five percent of the distribution of daily values, and is set at the 7.5th percentile value,
and so on.  Each of the twenty bins therefore represents 7.65 (=153/20) days, since there are 153 days
between May and September.

After generating 20 bins for both the baseline and control scenarios, we take the difference between
these two values at each bin.  We subtract the baseline value in the first bin from the control value in the
first bin, and so on for each of the 20 bins.  For each CAPMS gridcell, we then get 20 values representing
the difference between the baseline and control, and we use these to estimate the change in adverse effects
associated with the implementation of the policy.  Note that since each value represents 7.65 days, we then
multiply each of the 20 incidence change estimates by 7.65 to reconstruct an entire season's worth of
incidence changes in the CAPMS grid cell.

2.2 PM Air Quality

We estimated the reduction in PM-related adverse effects based on the Agency’s application of a
national-scale version of the Regulatory Model System for Aerosols and Deposition (REMSAD). 
REMSAD was developed as an extension of the episodic UAM-V regional model.  Like UAM-V,



6  Given the potential impact of the HD Engine/Diesel Fuel rule on secondarily formed particles it is important to employ a
Eulerian model such as REMSAD.  The impact of secondarily formed pollutants typically involves primary precursor emissions from
a multitude of widely dispersed sources, and chemical and physical processes of pollutants that are best addressed using an air quality
model that employs an Eulerian grid model design.
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REMSAD is a three-dimensional grid-based Eulerian air quality model designed to estimate annual
particulate concentrations and deposition over large spatial scales (e.g., over the contiguous U.S.). 
Consideration of the different processes that affect primary (directly emitted) and secondary (formed by
atmospheric processes) PM at the regional scale in different locations is fundamental to understanding and
assessing the effects of proposed pollution control measures that affect ozone, PM and deposition of
pollutants to the surface.6  Because it accounts for spatial and temporal variations as well as differences in
the reactivity of emissions, REMSAD is useful for evaluating the impacts of the HD Engine/Diesel Fuel
rule on U.S. PM concentrations.  

For use in this benefits analysis, the Agency applied the modeling system to the entire U.S. for two
future-year scenarios: a 2030 base case and a 2030 HD Engine/Diesel Fuel control scenario.  The modeling
domain encompasses the contiguous 48 States.  The domain extends from 126 degrees west longitude to 66
degrees west longitude, and from 24 degrees north latitude to 52 degrees north latitude.  The model contains
horizontal grid-cells across the model domain of roughly 36 km by 36 km.  There are 8 vertical layers of
atmospheric conditions with the top of the modeling domain at roughly 16,000 meters.  The 36 by 36 km
horizontal grid results in a 120 by 92 grid (or 10,080 grid-cells) for each vertical layer. 

We assigned each CAPMS grid cell to the nearest REMSAD grid cell, by calculating the shortest
distance between the center of the CAPMS grid cell to the center of a REMSAD grid cell.  Note that we
use REMSAD data in an absolute sense, unlike the case with UAM-V where we use the modeling results in
a relative sense and scale ozone monitoring data.  We use the REMSAD modeling directly because there
are no clear biases in the modeling results, and perhaps most importantly, there is not a widespread network
of PM2.5 monitors that we could use in conjunction with the REMSAD modeling data.



7The log-linear form used in the epidemiological literature on PM-related health effects is often referred to as “Poisson
regression” because the underlying dependent variable is a count (e.g., number of deaths), believed to be Poisson distributed.  The
model may be estimated by regression techniques but is often estimated by maximum likelihood techniques.  The form of the model,
however, is still log-linear.
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3 General Issues in Estimating Health and Welfare Benefits

Changes in ozone, PM, and visibility levels result in changes in a number of health and welfare
effects, or “endpoints,” that society values.  This chapter discusses key issues in the estimation of adverse
health effects and in the valuation of health and welfare benefits.  Section 1 describes general issues that
particularly affect the estimation of changes in health effects.  Section 2 describes general issues in valuing
health and welfare changes.  Finally, Section 3 discusses how uncertainty is characterized in this analysis.

3.1 Estimating Adverse Health Effects

This section reviews issues that arise in the estimation of adverse health effects.  It reviews the
derivation of C-R functions, and it reviews how CAPMS combines air quality data and C-R functions.  In
addition, we discuss how we handle overlapping health effects, thresholds, estimating the baseline incidence
rates for the C-R functions, and other issues.

3.1.1 Basic Concentration-Response Model

The methods discussed in this sub-section apply to the estimation of  both ozone-related and PM-
related changes in adverse health effects.  For expository simplicity, the discussion focuses primarily on
PM-related changes.  The methods, however, are equally applicable to ozone-related changes in effects. 
Similarly, while several health endpoints have been associated with ozone and PM, the discussion below
refers only to a generic “health endpoint,” denoted as y.  Finally, the discussion refers to estimation of
changes in the incidence of the health endpoint at a single location (the population cell, which is equivalent
to the CAPMS gridcell).  Region-wide changes are estimated by summing the estimated changes over all
population cells in the region.

Different epidemiological studies may have estimated the relationship between PM and a particular
health endpoint in different locations.  The C-R functions estimated by these different studies may differ
from each other in several ways.  They may have different functional forms; they may have measured PM
concentrations in different ways; they may have characterized the health endpoint, y, in slightly different
ways; or they may have considered different types of populations.  For example, some studies of the
relationship between ambient PM concentrations and mortality have excluded accidental deaths from their
mortality counts; others have included all deaths.  One study may have measured daily (24-hour) average
PM concentrations while another study may have used two-day averages.  Some studies have assumed that
the relationship between y and PM is best described by a linear form (i.e., the relationship between y and
PM is estimated by a linear regression in which y is the dependent variable and PM is one of several
independent variables).  Other studies have assumed that the relationship is best described by a log-linear
form (i.e., the relationship between the natural logarithm of y and PM is estimated by a linear regression).7 
Finally, one study may have considered changes in the health endpoint only among members of a particular



8 The International Classification Codes are described at the website of the Medical Center Information Systems: Duke
University Health Systems (1999).

9 Other covariates besides pollution clearly affect mortality.  The parameter B might be thought of as containing these other
covariates, for example, evaluated at their means.  That is, B = Boexp{$1x1 + ... + $nxn}, where Bo is the incidence of y when all
covariates in the model are zero, and x1, ... , xn are the other covariates evaluated at their mean values.  The parameter B drops out of
the model, however, when changes in incidences are calculated, and is therefore not important.
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subgroup of the population (e.g., individuals 65 and older), while other studies may have considered the
entire population in the study location.

The estimated relationship between PM and a health endpoint in a study location is specific to the
type of population studied, the measure of PM used, and the characterization of the health endpoint
considered.  For example, a study may have estimated the relationship between daily average PM
concentrations and daily hospital admissions for “respiratory illness,” among individuals age 65 and older,
where “respiratory illness” includes International Classification of Disease (ICD) codes A, B, and C.8  If
any of the inputs had been different (for example, if the entire population had been considered, or if
“respiratory illness” had consisted of a different set of ICD codes), the estimated C-R function would have
been different.  When using a C-R function estimated in an epidemiological study to estimate changes in the
incidence of a health endpoint corresponding to a particular change in PM in a population cell, then, it is
important that the inputs be appropriate for the C-R function being used -- i.e., that the measure of PM, the
type of population, and the characterization of the health endpoint be the same as (or as close as possible
to) those used in the study that estimated the C-R function.  

Estimating the relationship between PM and a health endpoint, y, consists of (1) choosing a
functional form of the relationship and (2) estimating the values of the parameters in the function assumed. 
The two most common functional forms in the epidemiological literature on PM (and ozone) and health
effects are the log-linear and the linear relationship.  The log-linear relationship is of the form:

or, equivalently,

where the parameter B is the incidence of y when the concentration of PM is zero, the parameter $ is the
coefficient of PM, ln(y) is the natural logarithm of y, and " = ln(B).9  If the functional form of the C-R
relationship is log-linear, the relationship between )PM and )y is:

where y is the baseline incidence of the health effect (i.e., the incidence before the change in PM).  For a
log-linear C-R function, the relative risk (RR) associated with the change )PM is:
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Epidemiological studies often report a relative risk for a given )PM, rather than the coefficient, $, in the C-
R function.  The coefficient can be derived from the reported relative risk and )PM, however, by solving
for $:

The linear relationship is of the form:

where " incorporates all the other independent variables in the regression (evaluated at their mean values,
for example) times their respective coefficients.  When the C-R function is linear, the relationship between
a relative risk and the coefficient, $, is not quite as straightforward as it is when the function is log-linear. 
Studies using linear functions usually report the coefficient directly.

If the functional form of the C-R relationship is linear, the relationship between )PM and )y is
simply:

A few epidemiological studies, estimating the relationship between certain morbidity endpoints and
PM, have used functional forms other than linear or log-linear forms.  Of these, logistic regressions are the
most common.  Abt Associates (1999a, Appendix A) provides further details on the derivation of dose-
response functions.

3.1.2 Calculation of Adverse Health Effects with CAPMS

CAPMS is a population-based system for modeling population exposure to ambient levels of
criteria air pollutants and estimating the adverse health effects associated with this exposure.  CAPMS
divides the United States into multiple grid cells, and estimates the changes in incidence of adverse health
and welfare effects associated with given changes in air quality in each grid cell.  The national incidence
change (or the changes within individual states or counties) is then calculated as the sum of grid-cell-
specific changes.

To calculate point estimates of the changes in incidence of a given selection of adverse health and
welfare effects associated with a given set of air quality changes, CAPMS goes through the following steps
at each CAPMS grid cell:

C Interpolate the air quality in the baseline scenario and in the control scenario at the CAPMS grid
cell center, as described in Chapter 2.  If the daily values have been binned at the monitors from



10The Latin Hypercube method is used to enhance computer processing efficiency.  It is a sampling method that divides a
probability distribution into intervals of equal probability, with an assumption value for each interval assigned according to the
interval’s probability distribution.  Compared with conventional Monte Carlo sampling, the Latin Hypercube approach is more precise
over a fewer number of trials because the distribution is sampled in a more even, consistent manner (Decisioneering, 1996, pp. 104-
105).
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which the interpolation is carried out, the resulting baseline and control scenario air quality data at
the CAPMS grid cell center is also binned.

C Calculate the changes in air quality from baseline to control scenario in the CAPMS grid cell.  The
changes in air quality are calculated as the differences between the baseline (daily, annual, or bin)
values and the corresponding control scenario (daily, annual, or bin) values.  The change in the nth

daily or bin concentration is the difference between the baseline nth daily or bin concentration and
the control scenario nth daily or bin concentration.

C Access the selected C-R functions being used, and the required baseline incidence rates and grid
cell population.

C Using the above inputs, calculate the change in incidence of each adverse health effect for which a
C-R function has been accessed.  

For functions based on changes in daily average pollutant concentrations, estimated incidence
changes corresponding to air quality changes on each of 365 days or in each of the 20 bins are summed. 
When binning is used, this summed incidence is the result of 20 representative air quality changes (one for
each bin).  Recall that each bin represents 18.25 days for PM (to represent a year’s worth of exposure) and
7.65 days for ozone (to represent an ozone season’s worth of exposure).  To adjust the summed incidence
estimate, it is multiplied by either 18.25 to produce an annual change, or by 7.65 to produce a seasonal
change.  This procedure is applied to each grid cell in CAPMS.  The resulting incidence change is stored,
and CAPMS proceeds to the next grid cell, where the above process is repeated.  The national change (or
the change in any designated geographical area) is calculated at the end of the process by summing the grid
cell-specific changes.

To reflect the uncertainty surrounding predicted incidence changes resulting from the sampling
uncertainty surrounding the pollutant coefficients in the C-R functions used, CAPMS produces a
distribution of possible incidence changes for each adverse health, rather than a single point estimate.  To
do this, it uses both the point estimate of the pollutant coefficient ($ in the above equation) and the standard
error of the estimate to produce a normal distribution with mean equal to the estimate of $ and standard
deviation equal to the standard error of the estimate.  Using a Latin Hypercube method,10 we take the nth

percentile value of $ from this normal distribution, for n = 0.5, 1.5, ..., 99.5, and follow the procedure
outlined in the section above to produce an estimate of the incidence change, given the $ selected. 
Repeating the procedure for each value of $ selected results in a distribution of incidence changes in the
CAPMS grid cell.  This distribution is stored, and CAPMS proceeds to the next grid cell, where the
process is repeated.  A distribution of the national change (or change in a designated geographical area) is
calculated by summing the nth percentile grid cell-specific changes, for n = 0.5, 1.5, ..., 99.5. 



11 The Census Bureau definitions are available at: http://www.census.gov/population/www/estimates/aboutmetro.html .
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3.1.3 Population Projections

Benefits for the HD Engine/Diesel Fuel rule analysis are based on health and welfare effect
incidence changes due to predicted air quality improvements in the year 2030.  Integral to the estimation of
such benefits is an accurate estimate of future population projections.  This section describes the method
used to estimate county-level 2030 populations.

The underlying data used to create county-level 2030 population projections is based on: (1) 1990
county-level population statistics for all U.S. counties collected by the U.S. Census (Wessex, 1994), and
(2) future-year state and metropolitan area population estimates provided by the Bureau of Economic
Analysis (1995).  Growth factors are calculated using the BEA data and are applied to the 1990 county-
level populations.

A growth factor is calculated by taking the ratio of an estimated region’s 2030 population divided
by the1990 population for that same area.  Population estimates for the years 1990-93, 2000, 2005, 2010,
2015, 2025 and 2045 were collected by the BEA.  A 2030 population estimate was not provided.  Instead,
2030 state and metropolitan area populations were interpolated linearly using estimates from the years
2025 and 2045.

Growth factors are calculated for both urban areas and rural areas.  An urban area is defined as a
county that falls within a metropolitan area.  This includes metropolitan statistical areas (MSAs), primary
metropolitan statistical areas (PMSAs), consolidated metropolitan statistical areas (CMSAs), and New
England county metropolitan areas (NECMAs), as defined by U.S. Census Bureau.11  In this section,
however, all metropolitan areas are referred to as MAs.  A rural area is defined as a county that falls
outside the defined metropolitan areas.  

Urban areas grow according to the growth rate calculated for the particular metropolitan area
within which they are located.  This adjustment is very straightforward, simply taking the ratio of future
year to base year metropolitan area population and multiplying that factor by the base year county
population.  The equation is:

where:

2030CountyPopi = projected 2030 population in urban county i
1990CountyPopi = actual 1990 population for county i
2030MAPopi = projected 2030 population in metropolitan area for county i
1990MAPopi = actual 1990 population for metropolitan area for county i.

Rural areas grow according to the growth rate calculated for the particular state within which they
are located, adjusted to subtract out metropolitan area populations.  Before the ratio of future year to base
year state population is calculated, the population attributed to all metropolitan areas located within that
state is subtracted from the future year and base year population totals.  Once this metropolitan area
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adjustment has been made, the rural growth factor is multiplied by the base-year population in all non-MA
counties to get future-year population projections.  

To calculate 2030 population, we use the following equaiton:

where:

2030CountyPopi = projected 2030 population in rural county i
1990CountyPopi = actual 1990 population for county i
2030StatePopi = projected 2030 population in state where county i is located
1990State Popi = actual 1990 population for state where county i is located
'2030MAPopi = projected 2030 population in metropolitan areas located in state with county i
'1990MAPopi = actual 1990 population for metropolitan areas located in state with county i .

One problem that exists with this method is that many metropolitan areas cross state boundaries. 
To accurately subtract urban populations from state populations, we need to know the urban county
populations for both 1990 and 2030.  Using the county populations for 1990, we can estimate the portion
of a particular metropolitan area’s population that belongs to a given state.  However, we do not have 2030
county population projections with which to apportion 2030 metropolitan area populations.  To remedy
this, we apply the same percent of the  population a given county contributes to a metropolitan area in 1990
to 2030 metropolitan areas when apportioning populations between states.

The above procedure refers to population estimates at the county level.  CAPMS, however,
apportions population estimates to the CAPMS grid cell level.  To do this, CAPMS uses census-derived
1990 block group population estimates.  Each block group has a centroid.  For each centroid that is located
within a CAPMS grid cell, the grid cell is assigned that population.  To inflate 1990 population estimates
to a future year estimation of population within a CAPMS grid cell, county level ratios, calculated using
the county level estimates described above, are applied to CAPMS grid cells that fall within a particular
county.  There are a few inaccuracies with this procedure.  CAPMS grid cells and census block groups do
not share similar borders.  When a block group centroid is assigned to a CAPMS grid cell, there may be
some overlap with other grid cells.  The total block group population, however, is assigned only to the
CAPMS grid cell in which it is located.  A similar issue exists when assigning county-level ratios to
CAPMS grid cells.  The county in which a grid cell is located is determined by the grid cell center. 
However, the grid cell center may overlap with other counties.  Both issues may lead to the assignment of
populations or adjustment factors to the wrong area.  The overall magnitude of the discrepancy, however, is
slight because of the small area each of the block groups and grid cells represent.

3.1.4 Overlapping Health Effects

Several endpoints reported in the health effects literature overlap with each other.  Hospital
admissions for single respiratory ailments (e.g. pneumonia) overlap with estimates of hospital admissions



12Pneumonia is often classified with the International Classification of Diseases (ICD) codes of 480-486, while all
respiratory admissions are classified with ICD codes 460-519.

13Thresholds may also apply to ozone, however, recent RIAs have not explicitly modeled ozone thresholds.
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for “all respiratory” ailments.12  Similarly, several studies quantify the occurrence of respiratory symptoms
where the definitions of symptoms are not unique (e.g., shortness of breath or upper respiratory symptoms). 
In choosing studies to include in the aggregated benefits estimate (discussed below), this analysis carefully
avoids double-counting benefits that might arise from overlapping health effects.  Specific methods for
avoiding double-counting of benefits are described in detail in the sections discussing health effects for
which this is an issue.

3.1.5 Baseline Incidences 

As noted above, most of the relevant C-R functions are log-linear, and the estimation of incidence
changes based on a log-linear C-R function requires a baseline incidence.  The baseline incidence for a
given CAPMS population cell is the baseline incidence rate in that location multiplied by the relevant
population.  County mortality rates are used in the estimation of air pollution-related mortality, and all
CAPMS population cells in the county are assumed to have the same mortality rate.  Hospital admissions
are only available at the national level, so all areas are assumed to have the same incidence rate for a given
population age group.  For some endpoints, such as respiratory symptoms and illnesses and restricted
activity days, baseline incidence rates are not available even at the national level.  The only sources of
estimates of baseline incidence rates in such cases are the studies reporting the C-R functions for those
health endpoints.  The baseline incidence rate and its source are given for each C-R function in Appendices
B and C.

3.1.6 Thresholds

A very important issue in applied modeling of changes in PM is whether to apply the C-R
functions to all predicted changes in ambient concentrations, even small changes occurring at levels
approaching the concentration in which they exist in the natural environment (without interference from
humans), referred to as “anthropogenic background.” Different assumptions about whether to model
thresholds, and if so, at what levels, can have a major effect on the resulting benefits estimates.13 

In this analysis, we do not use thresholds in any of the epidemiological functions relating PM or
ozone to various health and welfare endpoints.  We assume that all of these functions are continuous and
differentiable down to zero pollutant levels.

There is some evidence that, at least for particulate matter, not only is there no threshold, but the
PM coefficient may actually be larger at lower levels of PM and smaller at higher levels.  Examining the
relationship between particulate matter (measured as TSP) and mortality in Milan, Italy during the ten year
period 1980-1989, Rossi et al. (1999) fitted a model with one slope across the entire range of TSP and an
additional slope for TSP greater than 200 µg/m3 .  The second slope was statistically significant
(p<0.0001) and negative, indicating a lower slope at higher TSP levels.
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Schwartz (2000b, p. 566) examined the relationship between PM10 and mortality in ten U.S. cities
and reported similar results.  When restricting his model to days with PM10 levels below 50 µg/m3,
Schwartz found a larger effect for PM10, in comparison to a model that included all days.

If desired, a threshold may be imposed on these models in several ways, and there are various
points at which the threshold could be set.  Some points are obvious candidates, such as the background
level of the pollutant or a relevant standard for the pollutant.  Whatever the threshold, the implication is
that there are no effects below the threshold.

A threshold model can be constructed in more than one way.  One method is to simply truncate the
C-R function at the threshold (i.e., to not include any physical effect changes associated with PM
concentrations below the designated threshold).  This method uses the original C-R function, but calculates
the change in PM as [max(T,baseline PM) - max(T, regulatory alternative PM)], where T denotes the
designated threshold.  This threshold model will predict a smaller incidence of the health effect than the
original model without a threshold.  Clearly, as T increases, the predicted incidence of the health effect will
decrease.

An alternative method is to replace the original C-R function with a “hockey stick” model that best
approximates the original function that was estimated using actual data.  The hockey stick model is
horizontal up to a designated threshold PM level, T, and is linear with a positive slope for PM
concentrations greater than T.  Recall the log-linear C-R function:

Assuming that the value of the coefficient, $, depends on the level of PM, we get:

Ideally, the coefficients would be estimated based on the data in the original study – that is, a
hockey stick model would be fit to the original data, so that the threshold model that is most consistent with
the available information would be chosen.  If a threshold model could be estimated from the original data,
it is unlikely that "’ would equal " or that $’ would equal $, because such a hockey stick model would be
consistently below the original model, except at PM=0 (where the two models would coincide).  If that were
the hockey stick model that best fit the data, then it is unlikely that the best fitting linear model would be
consistently above it.  Instead, the hockey stick model that best fits the same data would most likely have
"’>" and $’>$.  A graph of this model would therefore cross the graph of the linear model at two points. 
Whether such a hockey stick threshold model predicted a greater or smaller incidence of the health effect
than the linear model would depend on the distribution of PM levels.  It is worth noting that the graph of
the first type of threshold model, in which the C-R function is simply truncated at the threshold, would be
discontinuous at the threshold.  This is highly unlikely to be a good model of the actual relationship
between PM and any health endpoint. 

3.1.7 Application of a Single C-R Function Everywhere 
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Whether the C-R relationship between a pollutant and a given health endpoint is estimated by a
single function from a single study or by a pooled function of C-R functions from several studies, that same
C-R relationship is applied everywhere in the benefits analysis.  Although the C-R relationship may in fact
vary somewhat from one location to another (for example, due to differences in population susceptibilities
or differences in the composition of PM), location-specific C-R functions are available only for those
locations in which studies were conducted.  While a single function applied everywhere may result in
overestimates of incidence changes in some locations and underestimates of incidence changes in other
locations, these location-specific biases will to some extent cancel each other out when the total incidence
change is calculated.  It is not possible to know the extent or direction of the bias in the total incidence
change based on application of a single C-R function everywhere.

3.1.8 Estimating Pollutant-Specific Benefits Using Single Pollutant vs. Multi-Pollutant Models

Many studies include both ozone and particulate matter in their final models.  It is often difficult to
separate out the effect of a single pollutant from the effects of other pollutants in the mix.  Multi-pollutant
models have the advantage that the coefficient for a single pollutant in such a model will be unbiased (so
that the effects of other pollutants will not be attributed falsely to the single pollutant).  However, the
variance of the estimator of the coefficient of the pollutant of interest will increase as the correlations
between the other pollutants in the model and that pollutant increase.  If the other pollutants in the model
are highly correlated with the pollutant of interest, we would have an unbiased but unstable (high variance)
estimator.  However, while single pollutant models have the advantage of more stable estimators, the
coefficient estimate in a single pollutant model could be biased in such a model.  We could consider the
single pollutant as an “indicator pollutant” – i.e., an indicator of a pollution mix – if we use single pollutant
models.  However, there is no guarantee that the composition of the pollution mix will remain the same
under a control scenario that targets only a single pollutant.  

This analysis uses both single pollutant and multi-pollutant models to derive pollutant-specific
benefits estimates.  When more than one study has estimated the relationship between a given endpoint and
a given pollutant, information from both single-pollutant and multi-pollutant models may be pooled to
derive pollutant-specific benefits estimates.  For example, the benefits predicted by a model with only PM
may be pooled with the benefits predicted by a model with both PM and ozone to derive an estimate of the
PM-related benefits associated with a given endpoint.  If the benefits of PM-related and ozone-related
incidence changes are both being calculated and added together, there is the possibility of overestimating
benefits if some of the studies used are single pollutant models.  

If ozone is actually associated with a given endpoint, but PM appears to be associated only
because it is correlated with ozone, then there is the potential for problems.  In this case, the benefits
predicted by a single pollutant PM model would actually reflect the benefits of reducing ozone, to the extent
that PM and ozone are correlated.  If those “PM-related” benefits were then added to the ozone-related
benefits calculated from other models, a likely result would be the overstatement of benefits of reducing
ozone.  To avoid this problem, we prefer to use models that include both ozone and PM. 

3.1.9 Pooling Study Results

When only a single study has estimated the C-R relationship between a pollutant and a given health
endpoint, the estimation of a population cell-specific incidence change, )y, is straightforward, as noted
above.  When several studies have estimated C-R relationships between a pollutant and a given health



14 In studies of the effects of PM10 on mortality, for example, if the composition of PM10 varies among study locations the
underlying relationship between mortality and PM10 may be different from one study location to another.  For example, fine particles
make up a greater fraction of PM10 in Philadelphia County than in Southeast Los Angeles County.  If fine particles are
disproportionately responsible for mortality relative to coarse particles, then one would expect the true value of $ for PM10 in
Philadelphia County to be greater than the true value of $ for PM10 in Southeast Los Angeles County.  This would violate the
assumption of the “fixed effects” model.  However, applying a random effects model assumes that the observed set of coefficients in
the policy region.
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endpoint, the results of the studies can be pooled to derive a single estimate of the function.  If the
functional forms, pollutant averaging times, and study populations are all the same (or very similar), a
pooled, “central tendency” C-R function can be derived from multiple study-specific C-R functions.  Even
if there are differences among the studies, however, that make a pooled C-R function infeasible, a pooled
estimate of the incidence change, )y, and/or the monetary benefit of the incidence change can be obtained
by incorporating the appropriate air quality data into the study-specific C-R functions and pooling the
resulting study-specific predictions of incidence change.  Similarly, study-specific predictions of incidence
change can be combined with unit dollar values to produce study-specific predictions of benefits. 

Whether the pooling is done in “coefficient space,” “incidence change space,” or “dollar space,”
the question of the relative weights assigned to the estimates (of coefficients, incidence changes, or dollar
benefits) from each input study must be addressed.  One possibility is simply averaging the estimates from
all the studies.  This has the advantage of simplicity, but the disadvantage of not taking into account the
measured uncertainty of each of the estimates.  Estimates with great uncertainty surrounding them are
given the same weight as estimates with very little uncertainty. 

An alternative approach to pooling incidence estimates from different studies is to give more
weight to studies with little estimated variance than to studies with a great deal of estimated variance.  The
exact way in which weights are assigned to estimates from different studies in a pooled analysis depends on
the underlying assumption about how the different estimates are related to each other.  Under the
assumption that there is actually a distribution of true effect coefficients, or $’s, that differ by location
and/or study (referred to as the random effects model), the different coefficients reported by different
studies may be estimates of different underlying coefficients, rather than just different estimates of the same
coefficient.  In contrast to the “fixed-effects” model (which assumes that there is only one $ everywhere),
the random-effects model allows the possibility that different studies are estimating different parameters.14 
Note that both methods tend to bias towards smaller estimates. 

A third approach to pooling studies is to apply subjective weights to the studies, rather than
conducting a random effects pooling analysis.  If the analyst is aware of specific strengths and weaknesses
of the studies involved, this prior information may be used as input to the calculation of weights which
reflect the relative reliability of the estimates from the studies.

In those cases in which pooling of information from multiple studies was an option in this analysis,
pooling was done in both “incidence change space” and “dollar benefit space.”  The hypothesis of fixed
effects was tested.  If this hypothesis was rejected, an underlying random effects model was used as the
basis for weighting of studies.  A more detailed description of the pooling procedure used is given below in
the section on hospital admissions.
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3.2 Valuing Changes in Health And Welfare Effects

This section discusses a number of issues that arise in valuing changes in health and welfare
effects.  The first section provides some background on willingness to pay (WTP).  The second section
discusses the possibility that as income changes then WTP would also change.  The third section describes
how WTP estimates, that were originally calculated in 1990 dollars, are corrected for inflation to get
estimates in 1999 dollars.  In the last section, we briefly review how we aggregate benefits estimates.

3.2.1 WTP Estimation

WTP is a measure of value an individual places on gaining an outcome viewed as desirable, be it
something that can be purchased in a market or not.  The WTP measure, therefore,  is the amount of money
such that the individual would be indifferent between having the good (or service) and having the money. 
An alternative measure of economic value is willingness to accept (WTA) a monetary compensation to
offset a deterioration in welfare, such that the individual would be indifferent between having the money
and not having the deterioration.  Whether WTP or WTA is the appropriate measure depends on how
property rights are assigned.  Consider an increase in air pollution.  If society has assigned property rights
so that people have a right to clean air, then they must be compensated for an increase in the level of air
pollution.  The appropriate measure of the value of avoiding an increase in air pollution, in this case, would
be the amount people would be willing to accept in compensation for the more polluted air.  If, on the other
hand, society has not assigned people the right to clean air, then the appropriate measure of the value of
avoiding an increase in air pollution would be what people are willing to pay to avoid it.  The assignment of
property rights in our society is unclear.  WTP is by far the more common measure used in benefits
analyses, however, reflecting the fact that this is a much more common measure in the empirical valuation
literature.  In this analysis, wherever possible, the valuation measures are in terms of WTP.  Where such
estimates are not available, alternative measures are used, such as cost-of-illness and wage-risk studies. 
These are discussed for each endpoint where applicable.

For both market and non-market goods, WTP reflects individuals’ preferences.   Because
preferences are likely to vary from one individual to another, WTP for both market (e.g., the purchase of a
new automobile) and non-market goods (e.g., health-related improvements in environmental quality) is
likely to vary from one individual to another.  In contrast to market goods, however, non-market goods,
such as environmental quality improvements, are public goods whose benefits are shared by many
individuals.  The individuals who benefit from the environmental quality improvement may have different
WTPs for this non-market good.  The total social value of the good is the sum of the WTPs of all
individuals who “consume” (i.e., benefit from) the good.  

In the case of health improvements related to pollution reduction, it is not certain specifically who
will receive particular benefits of reduced pollution.  For example, the analysis may predict 100 hospital
admissions for respiratory illnesses avoided, but the analysis does not estimate which individuals will be
spared those cases of respiratory illness that would have required hospitalization.  The health benefits
conferred on individuals by a reduction in pollution concentrations are, then, actually reductions in the risk
of having to endure certain health problems.  These benefits (reductions in risk) may not be the same for all
individuals (and could be zero for some individuals).  Likewise, the WTP for a given benefit is likely to
vary from one individual to another.  In theory, the total social value associated with the decrease in risk of
a given health problem resulting from a given reduction in pollution concentrations is:
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where Bi is the benefit (i.e., the reduction in risk of having to endure the health problem) conferred on the ith

individual (out of a total of N) by the reduction in pollution concentrations, and WTPi(Bi) is the ith

individual’s WTP for that benefit.  

If a reduction in pollution concentrations affects the risks of several health endpoints, the total
health-related social value of the reduction in pollution concentrations is:
 

where Bij is the benefit related to the jth health endpoint (i.e., the reduction in risk of having to endure the jth

health problem) conferred on the ith individual by the reduction in pollution concentrations, and WTPi(Bij) is
the ith individual’s WTP for that benefit.  

The reduction in risk of each health problem for each individual is not known, nor is each
individual’s WTP for each possible benefit he or she might receive known.  Therefore, in practice, benefits
analysis estimates the value of a statistical health problem avoided.  For example, although a reduction in
pollutant concentrations may save actual lives (i.e., avoid premature mortality), whose lives will be saved
cannot be known ex ante.  What is known is that the reduction in air pollutant concentrations results in a
reduction in mortality risk.  It is this reduction in mortality risk that is valued in a monetized benefit
analysis.  Individual WTPs for small reductions in mortality risk are summed over enough individuals to
infer the value of a statistical life saved.  This is different from the value of a particular, identified life
saved.  Rather than  “WTP to avoid a death,” then, it is more accurate to use the term “the value of a
statistical life.”    

Suppose, for example, that a given reduction in PM concentrations results in a decrease in
mortality risk of 1/10,000.  Then for every 10,000 individuals, one individual would be expected to die in
the absence of the reduction in PM concentrations (who would not die in the presence of the reduction in
PM concentrations).  If WTP for this 1/10,000 decrease in mortality risk is $500 (assuming, for now, that
all individuals’ WTPs are the same), then the value of a statistical life is 10,000 x $500, or $5 million. 

A given reduction in PM concentrations is unlikely, however, to confer the same risk reduction
(e.g., mortality risk reduction) on all exposed individuals in the population.  (In terms of the expressions
above, Bi is not necessarily equal to Bj , for i …j).  In addition, different individuals may not be willing to
pay the same amount for the same risk reduction.  The above expression for the total social value
associated with the decrease in risk of a given health problem resulting from a given reduction in pollution



15 Some health effects, such as technical measures of pulmonary functioning (e.g., forced expiratory volume in one second)
are frequently studied by epidemiologists, but there has been very little work by economists on valuing these changes (e.g., Ostro et
al., 1989).
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concentrations may be rewritten to more accurately convey this.  Using mortality risk as an example, for a
given unit risk reduction (e.g., 1/1,000,000), the total mortality-related benefit of a given pollution
reduction can be written as:

where marginal WTPi(x) is the ith individual’s marginal willingness to pay curve, ni is the number of units
of risk reduction conferred on the ith exposed individual as a result of the pollution reduction, and N is the
total number of exposed individuals.  

The values of a statistical life implied by the value-of-life studies were derived from specific risk
reductions.  Implicit in applying these values to a situation involving possibly different risk reductions is
the assumption that the marginal willingness to pay curve is horizontal – that is, that WTP for n units of
risk reduction is n times WTP for one unit of risk reduction.  If the marginal willingness to pay curve is
horizontal, the integral in the above expression becomes a simple product of the number of units of risk
reduction times the WTP per unit.  The total mortality-related benefit (the expression above) then becomes:

If different subgroups of the population have substantially different WTPs for a unit risk reduction
and substantially different numbers of units of risk reduction conferred on them, then estimating the total
social benefit by multiplying the population mean WTP (MWTP) to save a statistical life times the
predicted number of statistical lives saved could yield a biased result.  Suppose, for example, that older
individuals’ WTP per unit risk reduction is less than that of younger individuals (e.g., because they have
fewer years of expected life to lose).  Then the total benefit will be less than it would be if everyone’s WTP
were the same.  In addition, if each older individual has a larger number of units of risk reduction conferred
on him (because a given pollution reduction results in a greater absolute reduction in risk for older
individuals than for younger individuals), this, in combination with smaller WTPs of older individuals,
would further reduce the total benefit.

While the estimation of WTP for a market good (i.e., the estimation of a demand schedule) is not a
simple matter, the estimation of WTP for a non-market good, such as a decrease in the risk of having a
particular health problem, is substantially more difficult.  Estimation of WTP for decreases in very specific
health risks (e.g., WTP to decrease the risk of a day of coughing or WTP to decrease the risk of admission
to the hospital for respiratory illness) is further limited by a paucity of information.15  Derivation of the
dollar value estimates discussed below was often limited by available information. 



16 An exception to this is the aggregate benefits, presented in Exhibit 6-5.

Agricultural benefits are discussed in Chapter 5.
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3.2.2 Change Over Time in WTP in Real Dollars

The WTP for health-related environmental improvements (in real dollars) could change between
now and the year 2030.  If real income increases between now and the year 2030, for example, it is
reasonable to expect that WTP, in real dollars, would also increase.  Based on historical trends, the U.S.
Bureau of Economic Analysis projects that, for the United States as a whole as well as for regions and
states within the U.S., mean per capita real income will increase.  For the U.S. as a whole, for example,
mean per capita personal income is projected to increase by about 16 percent from 1993 to 2005 (U.S.
Bureau of Economic Analysis, 1995).

Although the monetary benefits presented in this Technical Support Document (TSD) have not
been adjusted to account for changes over time in real income16, such adjustments were made to the dollar
benefits presented in this TSD, as described in Chapter VII of the corresponding Regulatory Impact
Analysis (RIA) for the Final HD Engine/Diesel Fuel rule. 

3.2.3 Adjusting Benefits Estimates from 1990 Dollars to 1999 Dollars

This section describes the methods used to convert benefits estimates into constant dollars.  In past
RIA analyses, cost and benefit estimates have been presented in constant 1990 dollars.  Benefits estimates
in this analysis, however, are presented in constant 1999 dollars.  To adjust benefits estimates from 1990
dollars to 1999 dollars, the method of adjustment depends on the basis of the benefits estimates.  These
methods are presented below.  Four different bases of estimates are delineated in Exhibit 3-1, including that
for agricultural benefits.17

Exhibit 3-1  Bases of Benefits Estimation

Basis of Benefit Estimation Benefit Endpoints

Cost of illness Hospital admissions avoided

Direct estimates of WTP Statistical lives saved; statistical life-years saved
Chronic bronchitis; chronic asthma
Morbidity endpoints using WTP
Visibility -- residential
Visibility -- recreational
Consumer cleaning cost savings

Earnings Work loss days (WLDs) avoided
Increased worker productivity

Changes in yields and prices of market commodities Agricultural benefits

Benefits estimates based on cost-of-illness have been adjusted by using the consumer price indexes
(CPI-Us) for medical care.  Because increases in medical costs have been significantly greater than the
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general rate of inflation, using a general inflator (the CPI-U for “all items” or some other general inflator)
to adjust from 1990 to 1999 dollars would downward bias cost-of-illness estimates in 1999 dollars.  

Benefits estimates based directly on estimates of WTP have been adjusted using the CPI-U for “all
items.”  The CPI-Us, published by the U.S. Dept. of Labor, Bureau of Labor Statistics, can be found in
Council of Economic Advisers (2000, Table B-58).  An overview of the adjustments from 1990 to 1999
dollars for WTP-based and cost-of-illness based valuations is given in Exhibit 3-2.

Exhibit 3-2  Consumer Price Indexes Used to Adjust WTP-Based and Cost-of-Illness-Based Benefits
Estimates from 1990 Dollars to 1999 Dollars

1990
(1)

1997
(2)

1999
(3)

Adjustment
Factor a

(3)/(1)

Adjustment
Factor a

(3)/(2)

Relevant Endpoints

CPI-U for “All
Items”  b

130.7 160.5 166.6 1.275 1.038 WTP-based valuation:
1. Statistical lives saved c

2. Chronic bronchitis
3. Chronic asthma
4.  Morbidity endpoints using WTP d

CPI-U for
Medical Care b

162.8 234.6 250.6 1.539 1.0682 Cost-of-illness based valuation:
Hospital admissions avoided e

a Benefits estimates in 1990 dollars are multiplied by the adjustment factor to derive benefits estimates in 1999 dollars.

b Source: Dept. of Labor, Bureau of Labor Statistics; reported in Council of Economic Advisers (2000, Table B-58)

c Adjustments to 1990 $ were originally made by Industrial Economics Inc. using the CPI-U for “all items” (IEc1992).

d Adjustments of WTP-based benefits for morbidity endpoints to 1990 $ were originally made by Industrial Economics Inc. (1993)
using the CPI-U for “all items.”

e Adjustments of cost-of-illness based estimates of all hospital admissions avoided to 1990 $ were made by Abt Associates Inc. in
previous analyses, such as the NAAQS RIA (U.S. EPA, 1997a).  

Benefit estimates for work loss days (WLDs) avoided have in past analyses been based on either
the mean or median daily wage. For this analysis, the valuation of the benefit of avoiding a work loss day
used the median daily income rather than the mean, consistent with economic welfare theory.  The income
distribution in the United States is highly skewed, so that the mean income is substantially larger than the
median income.  However, the incomes of those individuals who lose work days due to pollution are not
likely to be a random sample from this income distribution.  In particular, the probability of being drawn
from the upper tail of the distribution is likely to be substantially less than the probability mass in that tail. 
To reflect this likelihood, we used the median income rather than the mean income as the value of a work
loss day.  This is explained more fully below in the section on valuing work loss days.  

The benefits estimates for WLDs avoided can be put into 1999 dollars in several ways.  One
approach is to obtain the 1998 median weekly earnings (the most up-to-date measure of earnings
available), divide by five to derive the median daily earnings, and adjust the median earnings from 1998 to
1999 dollars.  This is an alternative to relying on adjustments from 1990 to 1999 dollars.  The median
weekly earnings of full-time wage and salary workers in 1998 was $523 (U.S. Bureau of the Census 1998,
Table 696).  This implies a median daily earnings of $104.6, or rounded to the nearest dollar, $105. 
Alternatively, we can adjust the median daily wage for 1990 to 1999 dollars, using the CPI-U for “all
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items.”  The result turns out to be the same.  The adjustment factor (the ratio of the 1999 CPI-U to the
1990 CPI-U) is 1.275.  Applied to the median daily earnings of $82.4 in 1990, the median daily earnings in
1999 would be $105.1, or rounded to the nearest dollar, $105.

Consistent with economic welfare theory, the valuation of benefits associated with increased
worker productivity resulting from improved ozone air quality used the average daily income for outdoor
workers engaged in strenuous activity, reported by the 1990 U.S. Census ($73 per day, in 1990).  Using the
CPI-U for “all items,” the adjustment factor to adjust from 1990 to 1999 dollars (the ratio of the 1999 CPI-
U to the 1990 CPI-U) is 1.275.  Applied to the average daily earnings of $73 in 1990, the average daily
earnings in 1999 would be $93.08, or rounded to the nearest dollar, $93.

Finally, agricultural benefits (changes in farm income and consumer welfare) predicted to result in
a future year have been adjusted to 1999 dollars from 2010 using a GDP price deflator.  In this analysis,
2010 benefits were adjusted to 1999 dollars by multiplying by 0.6735, the ratio of the 1999 GDP price
deflator (of 112.3 from:Council of Economic Advisers, 1997, Table B-3) to a projected 2010 GDP price
index (of 167.16) forecasted from the trend between 1997 and 2007,  obtained from the USDA baseline
projections (U.S. Department of Agriculture, 1988b, electronic file Tab01.wk1).

3.2.4 Aggregation of Monetized Benefits

The total monetized benefit associated with attaining a given set of pollution changes in a given
location is just the sum of the non-overlapping benefits associated with these changes.  In theory, the total
health-related social value of the reduction in pollution concentrations is:
 

where Bij is the benefit related to the jth health endpoint (i.e., the reduction in probability of having to endure
the jth health problem) conferred on the ith individual by the reduction in pollution concentrations, and
WTPi(Bij) is the ith individual’s WTP for that benefit. 

However, the reduction in probability of each health problem for each individual is not known, nor
do we know each individual’s WTP for each possible benefit he or she might receive.  Therefore, in
practice, benefits analysis estimates the value of a statistical health problem avoided.  The benefit in the kth

location associated with the jth health endpoint is just the change in incidence of the jth health endpoint in the
kth location, )yjk, times the value of an avoided occurrence of the jth health endpoint. 

Assuming that WTP to avoid the risk of a health effect varies from one individual to another, there
is a distribution of WTPs to avoid the risk of that health effect.  This population distribution has a mean. 
It is this population mean of WTPs to avoid or reduce the risk of the jth health effect, MWTPj, that is the



18The population of interest has not been defined.  In a location-specific analysis, the population of interest is the population
in that location.  The MWTP is ideally the mean of the WTPs of all individuals in the location.  There is insufficient information,
however, to estimate the MWTP for any risk reduction in any particular location.  Instead, estimates of MWTP for each type of risk
reduction will be taken to be estimates of the MWTP in the United States as a whole, and it will be assumed that MWTPi, i=1, ..., N in
each location is approximately the same as in the United States as a whole.    
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appropriate value in the benefit analysis.18  The monetized benefit associated with the jth health endpoint
resulting from attainment of standard(s) in the kth location, then, is:

and total monetized benefit in the kth location (TMBk) may be written as the sum of the monetized benefits
associated with all non-overlapping endpoints: 

The location- and health endpoint-specific incidence change, )yjk, is modeled as the population
response to the change in pollutant concentrations in the kth location.  The discussion below uses particulate
matter as an example but is equally applicable to any other pollutant, such as ozone.  Assuming a log-linear
C-R function, the change in incidence of the jth health endpoint in the kth location corresponding to a change
in PM, )PMk, in the kth location is:

where yjk is the baseline incidence of the jth health endpoint in the kth location and $jk is the value of  $j , the
coefficient of PM in the C-R relationship between PM and the jth health endpoint, in the kth location.  

This approach assumes that there is a distribution of $j’s across the United States, that is, that the
value of $j in one location may not be the same as the value of $j in another location.  The value of $j in the
kth location is denoted as $jk .

The total PM-related monetized benefit for the kth location can now be rewritten as:

The total monetized PM-related benefit to be estimated for a location is thus a function of 2N parameters:
the coefficient of PM, $jk , in the C-R function for the jth health (or welfare) endpoint, for j=1, ..., N,
specific to the kth location, and the population mean WTP to reduce the risk of the jth health endpoint,
MWTPj , j=1, ..., N. 



19This may also be true of the yij’s.  It may be desirable to apply the uncertainty analysis used for the $’s to these population
parameters as well.  In the current discussion, however, it is assumed that the location-specific incidences are known and therefore
have no uncertainty associated with them.  It is also assumed that MWTPi is the same in all locations.
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The above model assumes that total monetized benefit is the sum of the monetized benefits from all
non-overlapping endpoints.  If two or more endpoints were overlapping, or if one was contained within the
other (as, for example, hospital admissions for Chronic Obstructive Pulmonary Disease - COPD - is
contained within hospital admissions for “all respiratory illnesses”), then adding the monetized benefits
associated with those endpoints would result in double (or multiple) counting of monetized benefits.  If
some endpoints that are not contained within endpoints included in the analysis are omitted, then the
aggregated monetized benefits will be less than the total monetized benefits.

The total monetized benefit (TMB) is the sum of the total monetized benefits achieved in each
location:

where TMBk denotes the total monetized benefit achieved in the kth location, and K is the number of
locations.

Theoretically, the nation-wide analysis could use location-specific C-R functions to estimate
location-specific benefits.  Total monetized benefits (TMB), then, would just be the sum of these location-
specific benefits:

There are many locations in the United States, however, and the individual location-specific values of $j

(the $jk’s)  are not known.19  Since the national incidence of the jth health endpoint attributed to PM, Ij, is a
continuous function of the set of $jk’s, that is, since:

is a continuous function of the set of $jk’s, there is some value of $j , which can be denoted $j*, that, if
applied in all locations, would yield the same result as the proper set of location-specific $jk’s.   This
follows from the Intermediate Value Theorem.  While $j* will result in overestimates of incidence in some
locations, it will result in underestimates in others.  If $j* is applied in all locations, however, the total
regional change in incidence will be correct.   That is,



Abt Associates Inc. December 20003-19

( )I y y ej jk jk
PM

k

K

k

K
j k= = ⋅ −⋅

==
∑∑ ∆ ∆β *

,1
11

( )= ⋅ −⋅

=
∑ y ejk

PM

k

K
jk kβ ∆ 1

1

.

( )TMB y e MWTPk jk
PM

j
k

K

j

N
j k= ⋅ − ⋅⋅

==
∑∑ β *

.∆ 1
11

The total regional monetized PM-related benefit can now be rewritten as:

The total regional monetized (PM-related) benefit is thus a function of 2N population means: the $* for the
jth health (or welfare) endpoint ($j* , for j=1, ..., N) and the population mean WTP to reduce the risk of the
jth health endpoint (MWTPj , j=1, ..., N).  

The above formulation of the total monetized benefits associated with a given set of changes in PM
across K locations is applied to ozone as well.  The set of health and welfare endpoints may be different for
ozone, but the calculation of benefits is the same, with )ozonek substituted for )PMk everywhere.

Both the endpoint-specific coefficients (the ÿj’s) and the endpoint-specific mean WTPs (the
MWTPj’s) are uncertain, as are the incidence rates and air quality changes.  One approach to estimating
the total monetized benefit is to simply use the mean values of the endpoint-specific coefficients and mean
WTPs in the above formula.  We term this approach the “simple mean.”  Alternatively, we can characterize
not only the mean total monetized benefit but the distribution of possible values of total monetized benefit,
using a Monte Carlo approach.  The Monte Carlo approach has three steps.  First, in each of 5000
iterations, we randomly select a value from the distribution of (national) incidence change of the health or
welfare effect.  Second, we randomly select a value from the distribution of unit dollar values for that
health or welfare effect.  And third, we multiply the two values.  The result is a distribution of (5000)
monetized benefits associated with the given health or welfare effect.  From this distribution, we present the
mean as well as the 5th and 95th percentiles.  We discuss the background of the Monte Carlo in the
following sub-section.

3.3 Characterization of Uncertainty

In any complex analysis using estimated parameters and inputs from numerous different models,
there are likely to be many sources of uncertainty.  This analysis is no exception.  There are many inputs
that are used to derive the final estimate of benefits, including emission inventories, air quality models (with
their associated parameters and inputs), epidemiological estimates of C-R functions, estimates of values
(both from WTP and cost-of-illness studies), population estimates, income estimates, and estimates of the
future state of the world, i.e. regulations, technology, and human behavior.  Each of these inputs may be
uncertain, and depending on their location in the benefits analysis, may have a disproportionately large
impact on final estimates of total benefits.  For example, emissions estimates are used in the first stage of
the analysis.  As such, any uncertainty in emissions estimates will be propagated through the entire
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analysis.  When compounded with uncertainty in later stages, small uncertainties in emissions can lead to
much larger impacts on total benefits.

Exhibit 3-3 summarizes the wide variety of sources for uncertainty in this analysis.  Some key
sources of uncertainty in each stage of the benefits analysis are:

•  gaps in scientific data and inquiry
•  variability in estimated relationships, such as C-R functions, introduced through differences in
study design and statistical modeling
•  errors in measurement and projection for variables such as population growth rates
•  errors due to misspecification of model structures, including the use of surrogate variables, such
as using PM10 when PM2.5 is not available, excluded variables, and simplification of complex
functions
•  biases due to omissions or other research limitations.

Our approach to characterizing model uncertainty in the estimate of total benefits is to present a
primary estimate, based on the best available scientific literature and methods, and to provide estimates of
the effects of uncertainty about key analytical assumptions.  However, in some cases, it was not possible to
quantify uncertainty.  For example, many benefits categories, while known to exist, do not have enough
information available to provide a quantified or monetized estimate.  The uncertainty regarding these
endpoints is such that we could determine neither a primary estimate nor a plausible range of values.  To
the extent possible, we address uncertainty by presenting alternative calculations, supplemental
calculations, sensitivity analyses, and probabilistic assessments.  We discuss each approach in turn.
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Exhibit 3-3  Key Sources of Uncertainty in the Benefit Analysis

1.  Uncertainties Associated With Concentration-Response Functions

-The value of the ozone- or PM-coefficient in each C-R function.

-Application of a single C-R function to pollutant changes and populations in all locations.

-Similarity of future year C-R relationships to current C-R relationships. 

-Correct functional form of each C-R relationship. 

-Extrapolation of C-R relationships beyond the range of ozone or PM concentrations observed in the study. 

-Application of C-R relationships only to those subpopulations matching the original study population.

2.  Uncertainties Associated With Ozone and PM Concentrations 

-Responsiveness of the models to changes in precursor emissions resulting from the control policy.

-Projections of future levels of precursor emissions, especially ammonia and crustal materials.

-Model chemistry for the formation of ambient nitrate concentrations.

-Lack of ozone monitors in rural areas requires extrapolation of observed ozone data from urban to rural areas.

-Use of separate air quality models for ozone and PM does not allow for a fully integrated analysis of pollutants and their
interactions.

-Full ozone season air quality distributions are extrapolated from a limited number of simulation days.

-Comparison of model predictions of particulate nitrate with observed rural monitored nitrate levels indicates that REMSAD
overpredicts nitrate in some parts of the Eastern US and underpredicts nitrate in parts of the Western US.

3.  Uncertainties Associated with PM Mortality Risk

-No scientific literature supporting a direct biological mechanism for observed epidemiological evidence.
-Direct causal agents within the complex mixture of PM have not been identified.
-The extent to which adverse health effects are associated with low level exposures that occur many times in the year versus peak
exposures.
-Possible confounding in the epidemiological studies of PM2.5, effects with other factors (e.g., other air pollutants, weather,
indoor/outdoor air, etc.).
-The extent to which effects reported in the long-term exposure studies are associated with historically higher levels of PM rather
than the levels occurring during the period of study.
-Reliability of the limited ambient PM2.5 monitoring data in reflecting actual PM2.5 exposures.

4.  Uncertainties Associated With Possible Lagged Effects

-The portion of the PM-related long-term exposure mortality effects associated with changes in annual PM levels would occur in a
single year is uncertain as well as the portion that might occur in subsequent years.

5.  Uncertainties Associated With Baseline Incidence Rates

-Some baseline incidence rates are not location-specific (e.g., those taken from studies) and may therefore not accurately represent
the actual location-specific rates.

-Current baseline incidence rates may not approximate well baseline incidence rates in 2030.

-Projected population and demographics may not represent well future-year population and demographics.

6.  Uncertainties Associated With Economic Valuation

-Unit dollar values associated with health and welfare endpoints are only estimates of mean WTP and therefore have uncertainty
surrounding them. 

-Mean WTP (in constant dollars) for each type of risk reduction may differ from current estimates due to differences in income or
other factors.

-Future markets for agricultural and forestry products are uncertain.

7.  Uncertainties Associated With Aggregation of Monetized Benefits

-Health and welfare benefits estimates are limited to the available C-R functions.  Thus, unquantified or unmonetized benefits are
not included.



20 Some recent benefit-cost analyses in Canada and Europe (Lang et al., 1995; Holland et al., 1999) have estimated ranges
of benefits by assigning ad hoc probabilities to ranges of parameter values for different endpoints.  Although this does generate a
quantitative estimate of an uncertainty range, the estimated points on these distributions are themselves highly uncertain and very
sensitive to the subjective judgements of the analyst.  To avoid these subjective judgements, we choose to allow the reader to
determine the weights they would assign to alternative estimates.
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3.3.1 Alternative and Supplementary Calculations

The alternative calculations included in this analysis are based on relatively plausible alternatives
to the assumptions used in deriving the primary benefit estimates.  We do not attempt to assign
probabilities to these alternative calculations, as we believe this would only add to the uncertainty of the
analysis or present a false picture about the precision of the results20.  Instead, the reader is invited to
examine the impact of applying the different assumptions on the estimate of total benefits.  While it is
possible to combine all of the alternative calculations with a positive impact on benefits to form a “high”
estimate or all of the alternative calculations with a negative impact on benefits to form a “low” estimate,
we do not recommend this because the probability of all of these alternative assumptions occurring
simultaneously is likely to be very low.  Instead, the alternative calculations are intended to demonstrate the
sensitivity of our benefits results to key parameters which may be uncertain.  Exhibit 3-4 summarizes the
alternative calculations included in this analysis.

Exhibit 3-4 also summarizes supplemental calculations prepared for this analysis.  Supplemental
calculations are intended to provide additional information about specific health effects, but are not suitable
for inclusion in the primary or alternative estimates due to concerns about double-counting of benefits or
the high degree of uncertainty about the estimates.  Results from the supplemental calculations can be
found in Appendix A.

Alternative Calculations

A number of studies that estimate plausible alternative relationships between PM exposure and
premature mortality are presented as alternative calculations to the mortality study included in the primary
analysis (Krewski et al., 2000, mean all-cause mortality).  These alternative mortality functions are
discussed in more detail in Section 4.

The value of statistical life years alternative calculation recognizes that individuals who die from
air pollution related causes tend to be older than the average age of individuals in the VSL studies used to
develop the $5.9 million value. To employ the value of statistical life-year (VSLY) approach, we first
estimated the age distribution of those lives projected to be saved by reducing air pollution. Based on life
expectancy tables, we calculate the life-years saved from each statistical life saved within each age and
gender cohort. To value these statistical life-years, we hypothesized a conceptual model which depicted the
relationship between the value of life and the value of life-years. The average number of life-years saved
across all age groups for which data were available is 14 for PM-related mortality. The average for PM, in
particular, differs from the 35-year expected remaining lifespan derived from existing wage-risk studies.
Using the same distribution of value of life estimates used above, we estimated a distribution for the value
of a life-year and combined it with the total number of estimated life-years lost.

An alternative to the calculation of life-years lost is age-based adjustments to the value of a
statistical life lost based on empirical estimates of WTP by age.  Several studies conducted by Jones-Lee, et
al. (1985; 1989; 1993) found a significant effect of age on the value of mortality risk reductions expressed



Abt Associates Inc. December 20003-23

by citizens in the United Kingdom.  We used the results of the Jones-Lee et al. analysis to calculate age-
specific values of a statistical life.  As described below, we started with the value of a statistical life lost by
an individual of about age 40, and then adjusted it with age-specific factors.  We use 40 as the base
because we use wage risk studies in developing the value of a statistical life, and the average age in the
wage-risk studies is about 40.

We apportioned the number of lives saved in each of the age groups used in the statistical life-
years-lost alternative calculation to the age groups used by Jones-Lee et al. (1989; 1993).  We then
multiplied the number of lives saved in an age group by the age-adjusted value of a statistical life saved for
that age group.  To calculate the value of a statistical life saved in an age group, we multiplied $6.12
million by the ratio of the WTP for mortality risk reduction in that age group to the WTP for mortality risk
reduction in the age 40-59 group, as reported by Jones-Lee et al. (1989; 1993).  The five-year lag structure
used in the primary method was applied under two alternative discount rate assumptions of three percent
and seven percent. Because the two Jones-Lee studies reported different ratios, this alternative calculation
was carried out separately using each of the two Jones-Lee studies. 

The alternative calculation for the development of chronic asthma is estimated using a recent study
by McDonnell, et al. (1999) that found a statistical association between ozone and the development of
asthma in adult white, non-Hispanic males.  Chronic asthma is characterized by repeated incidences of
inflammation of the lungs that causes restriction in the airways and results in shortness of breath, wheezing,
and coughing.  Asthma is also characterized by airway hyper responsiveness to stimuli.  However,
questions have been raised regarding the statistical validity of the associations found in this study, and the
appropriateness of transferring the estimated C-R function from the study populations (white, non-Hispanic
males) to other male populations (i.e. African-American males).  Moreover, other studies have not
identified an association between air quality and the onset of asthma.  We therefore include the results of
this study as an alternative calculation.

Reversals in chronic bronchitis incidences are defined as those cases where an individual reported
having chronic bronchitis at the beginning of the study period but reported not having chronic bronchitis in
follow-up interviews at a later point in the study period.  Since, by definition, chronic diseases are long-
lasting or permanent, if the disease goes away it is not chronic.  In the primary analysis, these reversals are
given a value of zero.  As an alternative calculation, we estimate reversals and value each as a case of the
mildest form of chronic bronchitis.

For this benefits analysis, we have adopted the C-R function for COPD and pneumonia hospital
admissions from Samet et al. (2000a).  This estimate, while representing the state of the art in
epidemiological studies, is a good deal larger than the estimate from Moolgavkar et al. (1997).  We explore
the impact of using the Moolgavkar et al. estimate instead of the Samet et al. in the alternative calculations.

In the primary analysis we present an estimate of the number of avoided asthma attacks due to PM
and ozone.  However, due to uncertainty over the magnitude of the estimate, we present the value of
avoided asthma attacks as an alternative calculation.

The alternative calculation for recreational visibility is an estimate of the full value of visibility in
the entire region affected by the final HD Engine/Diesel Fuel rule.  The Chestnut and Rowe (1990) study
from which the primary valuation estimates are derived only examined WTP for visibility changes in the
southeastern portion of the affected region.  In order to obtain estimates of WTP for visibility changes in
the northeastern and central portion of the affected region, we have to transfer the southeastern WTP
values.  This introduces additional uncertainty into the estimates.  However, we have taken steps to adjust
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the WTP values to account for the possibility that a visibility improvement in parks in one region, is not
necessarily the same environmental quality good as the same visibility improvement at parks in a different
region.  This may be due to differences in the scenic vistas at different parks, uniqueness of the parks, or
other factors, such as public familiarity with the park resource.  To take this potential difference into
account, we adjusted the WTP being transferred by the ratio of visitor days in the two regions.

The alternative calculations for residential visibility are based on the McClelland et al. (1991)
study of WTP for visibility changes in Chicago and Atlanta.  The residential visibility estimates from the
available literature have been determined by the SAB to be inadequate for use in a primary estimate in a
benefit-cost analysis, because they have not undergone rigorous peer review (U.S. EPA, 1999c, p. 13). 
However, residential visibility is likely to have some value and the McClelland et al. study is probably the
best in estimating the likely magnitude of the benefits of residential visibility improvements.

The alternative calculation for household soiling is based on the Manuel et al. (1982) study of
consumer expenditures on cleaning and household maintenance.  However, the data used to estimate
household soiling damages in the Manuel et al. study is from a 1972 consumer expenditure survey and as
such may not accurately represent consumer preferences in the future.  Despite this limitation, we believe
that the Manuel et al. estimates are still useful in providing an estimate of the likely magnitude of the
benefits of reduced PM household soiling.

Uncertainty bounds are provided as an alternative calculation for aggregate totals of benefits.  The
5th and 95th percentile alternative calculations are estimated by holding air quality changes, population
estimates, and other factors constant and determining the distribution of total benefits that would be
generated by a large number of random draws from the distributions of C-R functions and economic
valuation functions.  These alternative calculations thus show how the primary estimate of benefits changes
in response to uncertainty in the measurement of C-R and valuation functions.

Supplemental Calculations

Studies examining the relationship between short-term exposures and premature mortality can
reveal what proportion of premature mortality is due to immediate response to daily variations in PM. 
There is only one short-term study (presenting results from 6 separate U.S. cities) that uses PM2.5 as the
metric of PM (Schwartz et al., 1996).  As such, the supplemental estimate for premature mortality related
to short-term PM exposures is based on the pooled city-specific, short-term PM2.5 results from Schwartz et
al.

The estimated effect of PM exposure on premature mortality in infants (post-neonatal) is based on
a single U.S. study (Woodruff et al., 1997) that, on recommendation of the EPA Science Advisory Board,
was deemed too uncertain to include in the primary analysis.  Adding this endpoint to the primary benefits
estimate would result in an increase in total benefits.

In previous regulatory analyses, estimated incidences of ozone-related premature mortality have
been estimated as a primary endpoint.  However, based on recent advice from the EPA Science Advisory
Board (1999e, p. 6), we have converted this endpoint to a supplemental estimate to avoid potential double-
counting of benefits captured by the Pope et al. PM premature mortality endpoint.  There are many studies
of the relationship between ambient ozone levels and daily mortality levels.  However, we chose four U.S.
studies because we assume that demographic and environmental conditions on average would be more
similar between these studies and the conditions prevailing when this regulation is implemented.  The four
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studies are by Ito and Thurston (1996), Kinney et al. (1995), Moolgavkar et al. (1995), and Samet et al.
(1997). 

In perhaps one of the most detailed studies to date, Samet et al.(2000b) recently examined data
from 20 U.S. cities. They reported that ozone exposure during summer months may lead to premature
mortality, after controlling for PM10 exposure.  They did not find a significant effect when examining the
full year, perhaps because ozone levels are higher during summer months and there is a threshold in the
ozone-mortality relationship.  We did not attempt to include this study in our analysis because it was
published after we completed our calculations.
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Exhibit 3-4  Alternative and Supplemental Benefits Calculations for the HD Engine/Diesel Fuel Rule 
2030 Control Scenario

Alternative/Supplemental
Calculations

Description

Alternative Calculations

PM-related premature mortality A number of studies provide an alternative estimate of the relationship between chronic PM
exposure and mortality.

Value of avoided premature mortality
incidences based on statistical life
years

Calculate the incremental number of life-years lost from exposure to changes in ambient
PM and use the value of a statistical life year based on a $5.9 million value of a statistical
life.

Age-based adjustments to the value
of a statistical life lost

Results of the Jones-Lee et al. (1985; 1989; 1993) analysis were used to calculate age-
based adjustment factors to adjust the value of a statistical life lost by an individual of about
age 40 to age-specific values.

Chronic asthma Avoided incidences of chronic asthma are estimated using the McDonnell et al. (1999) C-R
function.

Reversals in chronic bronchitis
treated as lowest severity cases

Instead of omitting those cases of chronic bronchitis that reverse after a period of time, they
are treated as being cases with the lowest severity rating.

COPD and pneumonia hospital
admissions

Hospital admissions for pneumonia and COPD estimated using the Moolgavkar et al.
(1997) C-R function instead of the Samet et al. (2000a) pooled C-R function. 

Value of avoided asthma attacks Due to uncertainty regarding the number of avoided asthma attacks, we present the value of
avoided asthma attacks separately.

Value of visibility changes in all
Class I areas

Values of visibility changes at Class I areas in California, the Southwest, and the Southeast
are transferred to visibility changes in Class I areas in other regions of the country.

Value of visibility changes in Eastern
U.S. residential areas

Value of visibility changes outside of Class I areas are estimated for the Eastern U.S. based
on the reported values for Chicago and Atlanta derived from McClelland et al. (1991).

Value of visibility changes in
Western U.S. residential areas

Value of visibility changes outside of Class I areas are estimated for the Western U.S. based
on the reported values for Chicago and Atlanta from McClelland et al. (1990).

Household soiling damage Value of decreases in expenditures on cleaning are estimated using values derived from
Manuel et al. (1982).

Uncertainty bounds of aggregate
benefit totals

5th and 95th percentile values of the distribution of total estimated benefits for ozone, PM,
and ozone + PM.

Supplemental Calculations

Short-term mortality The Schwartz et al. (1996) study provides an estimate of the relationship between acute
PM exposure and mortality.

Post-neonatal mortality The Woodruff et al. (1997) study provides an estimate of the relationship between chronic
exposure and infant mortality.

Ozone mortality Ozone-related mortality benefits estimated using a pooled analysis based on four U.S.
studies.

Any-of-19 respiratory symptoms Due to the potential for overlap with health effects covered in the estimate of MRADs and
both PM- and ozone-related asthma attacks, we present Any-of-19 Respiratory Symptoms
separately.

Moderate or worse asthma Due to the potential for overlap with health effects covered in the estimate of MRADs and
PM-related asthma attacks, we present cases of moderate or worse asthma separately.

Shortness of breath Due to the potential for overlap with health effects covered in the estimate of MRADs and
PM-related asthma attacks, we present cases of shortness of breath separately.



21 Because this is a regional analysis in which, for each endpoint, a single C-R function is applied everywhere, there are two
sources of uncertainty about incidence: (1) statistical uncertainty (due to sampling error) about the true value of the pollutant
coefficient in the location where the C-R function was estimated, and (2) uncertainty about how well any given pollutant coefficient
approximates $*.
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Due to the potential for overlap with health effects covered in the pooled estimate of MRADs and
both PM- and ozone-related asthma attacks(Whittemore and Korn, 1980), cases of Any-of-19 Respiratory
Symptoms (Krupnick et al., 1990), cases of PM-related moderate or worse asthma (Ostro et al., 1991), and
cases of PM-related shortness of breath (Ostro et al., 1995) are presented separately as supplemental
calculations.  To include them would lead to a potential double-counting of benefits related to the avoidance
of asthma-related health effects.

3.3.2 Sensitivity Analyses

In addition to alternative calculations and supplementary calculations, we will perform sensitivity
analyses, briefly described in Exhibit 3-5.  Sensitivity analyses, as opposed to alternative calculations,
examine the sensitivity of estimated benefits results to less plausible alternatives to the assumptions used in
the primary analysis.  Sensitivity calculations also demonstrate the sensitivity of our benefits results to key
analytical parameters.  The sensitivity analyses calculated for this analysis will include  the impact of a
threshold assumption on the Krewski et al. (2000) mortality function, and alternative lag structures when
valuing mortality.  Results from the sensitivity analyses are presented in Appendix A.

Exhibit 3-5  Sensitivity Analyses for the HD Engine/Diesel Fuel  Rule 2030 Control Scenario

Sensitivity Analysis Description

Threshold assumptions Calculate the impact varying threshold assumptions have on the estimation of mortality
incidence based on the Krewski et al. (2000) study.

Alternative mortality lag structures Calculate the impact different lag structures have on the estimation of benefits associated
with avoided mortality incidence.

Income elasticities Calculate the impact of different assumptions about income elasticities.  See RIA.

3.3.3 Statistical Uncertainty Bounds

Although there are several sources of uncertainty affecting estimates of endpoint-specific benefits,
the sources of uncertainty that are most readily quantifiable in this analysis are the C-R relationships and
uncertainty about unit dollar values.  The total dollar benefit associated with a given endpoint depends on
how much the endpoint will change due to the final standard (e.g., how many premature deaths will be
avoided) and how much each unit of change is worth (e.g., how much a premature death avoided is
worth).21  Based on these distributions, we provide estimates of the 5th and 95th percentile values of the
distribution of estimated benefits.  However, we hasten to add that this omits important sources of
uncertainty, such as the contribution of air quality changes, baseline population incidences, projected
populations exposed, transferability of the C-R function to diverse locations, and uncertainty about
premature mortality.  Thus, a confidence interval based on the standard error would provide a misleading



22 Although such an “uncertainty distribution” is not formally a Bayesian posterior distribution, it is very similar in concept
and function (see, for example, the discussion of the Bayesian approach in Kennedy 1990, pp. 168-172).

23 This method assumes that the incidence change and the unit dollar value for an endpoint are stochastically independent.
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picture about the overall uncertainty in the estimates.  The empirical evidence about uncertainty is
presented where it is available.

Both the uncertainty about the incidence changes and uncertainty about unit dollar values can be
characterized by  distributions.  Each “uncertainty distribution” characterizes our beliefs about what the
true value of an unknown (e.g., the true change in incidence of a given health effect) is likely to be, based
on the available information from relevant studies.22  Unlike a sampling distribution (which describes the
possible values that an estimator of an unknown value might take on), this uncertainty distribution
describes our beliefs about what values the unknown value itself might be.  Such uncertainty distributions
can be constructed for each underlying unknown (such as a particular pollutant coefficient for a particular
location) or for a function of several underlying unknowns (such as the total dollar benefit of a regulation). 
In either case, an uncertainty distribution is a characterization of our beliefs about what the unknown (or
the function of unknowns) is likely to be, based on all the available relevant information.  Uncertainty
statements based on such distributions are typically expressed as 90 percent credible intervals.  This is the
interval from the fifth percentile point of the uncertainty distribution to the ninety-fifth percentile point. 
The 90 percent credible interval is a “credible range” within which, according to the available information
(embodied in the uncertainty distribution of possible values), we believe the true value to lie with 90
percent probability.

The uncertainty about the total dollar benefit associated with any single endpoint combines the
uncertainties from these two sources, and is estimated with a Monte Carlo method.  In each iteration of the
Monte Carlo procedure, a value is randomly drawn from the incidence distribution and a value is randomly
drawn from the unit dollar value distribution, and the total dollar benefit for that iteration is the product of
the two.23  If this is repeated for many (e.g., thousands of) iterations, the distribution of total dollar benefits
associated with the endpoint is generated. 

Using this Monte Carlo procedure, a distribution of dollar benefits may be generated for each
endpoint.  The mean and median of this Monte Carlo-generated distribution are good candidates for a point
estimate of total monetary benefits for the endpoint.  As the number of Monte Carlo draws gets larger and
larger, the Monte Carlo-generated distribution becomes a better and better approximation to the underlying
uncertainty distribution of total monetary benefits for the endpoint.  In the limit, it is identical to the
underlying distribution.

3.3.4 Unquantified Benefits

In considering the monetized benefits estimates, the reader should remain aware of the limitations. 
One significant limitation of both the health and welfare benefits analyses is the inability to quantify many
of the PM and ozone-induced adverse effects.  For many health and welfare effects, such as PM-related
materials damage, reliable C-R functions and/or valuation functions are not currently available.  In general,
if it were possible to monetize these benefits categories, the benefits estimates presented in this RIA would
increase.   In addition to unquantified benefits, there may also be environmental costs that we are unable to
quantify.  Several of these environmental cost categories are related to nitrogen deposition, while one
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category is related to the issue of ultraviolet light.  The net effect of excluding benefit and disbenefit
categories from the estimate of total benefits depends on the relative magnitude of the effects.
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4 Health Benefits

The most significant monetized benefits of reducing ambient concentrations of PM and ozone are
attributable to reductions in health risks associated with air pollution.  This Chapter describes individual
effects and the methods used to quantify and monetize changes in the expected number of incidences of
various health effects.

We estimate the incidence of adverse health effects using C-R functions based on PM and ozone. 
The changes in incidence of PM-related and ozone-related adverse health effects and corresponding
monetized benefits associated with these changes are estimated separately.  The PM- and ozone-related
health endpoints for which C-R functions are estimated are shown in Exhibits 4-1 and 4-2, respectively.  
The unit monetary values for each of these endpoints, and associated uncertainty distributions, are
presented in Exhibit 4-3.  As we discuss in the appropriate sections, we needed to assume the shape of the
distribution for some of the endpoints, such as the value of MRADs.

Note also, that in some cases there are alternative and/or supplemental endpoints, studies, or unit
dollar values that could be used in calculating the benefits of a change in pollution.  These alternatives are
presented where appropriate in Exhibits 4-1, 4-2, and 4-3 in italics to indicate that they are not used in the
primary analysis but may be used in alternative analyses or used to supplement the existing analyses. 
Appendices B and C present the functional forms for each C-R function and how they were derived.

 Issues relating to the calculation of changes in incidence and the monetization of these changes are
discussed below for each endpoint.  For some of the endpoint-pollutant combinations, there are several
epidemiological studies that have estimated C-R functions.  In these cases, the information in the multiple
studies is pooled, so that the estimation of the change in incidence and the corresponding monetized value
of that change is based on a synthesis of the information in all the available studies.  A general discussion
of pooling issues is provided above.  A detailed description of the method used to pool multiple studies in
this analysis is given below for those endpoints for which pooling was used.
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Exhibit 4-1  PM-Related Health Endpoints

Endpoint Population PM Study

Mortality

Associated with long-term exposure Ages 30+ PM2.5 Krewski et al. (2000), reanalysis of Pope
et al. (1995) using the annual mean and
all-cause mortality

Associated with long-term exposure a Ages 30+ PM2.5 Krewski et al. (2000), reanalysis of Pope
et al. (1995) using the annual median

Associated with long-term exposure Ages 30+ PM2.5 Krewski et al. (2000), reanalysis of Pope
et al. (1995) using the annual median,
random effects, independent cities

Associated with long-term exposure Ages 30+ PM2.5 Krewski et al. (2000), reanalysis of Pope
et al. (1995) using the annual median,
random effects, regional adjustment

Associated with long-term exposure Ages 30+ PM2.5 Krewski et al. (2000), reanalysis of
Dockery et al. (1993)

Associated with long-term exposure Ages 30+ PM2.5 Pope et al. (1995)

Associated with long-term exposure Ages 27+ PM2.5 Dockery et al. (1993)

Associated with long-term exposure 1-12 Months PM10 Woodruff et al. (1997)

Associated with short-term exposure All ages PM2.5 Schwartz et al. (1996)

Chronic Illness

Chronic Bronchitis varies by study varies by
study

Two studies b

Hospital Admissions

COPD  (ICD-9 codes 4490-492, 494-496)  age 65+ PM10 Samet et al. (2000a)c

Pneumonia (ICD-9 codes 480-487)  age 65+ PM10 Samet et al. (2000a)c

Cardiovascular (ICD-9 codes 390-429) age 65+ PM10 Samet et al. (2000a)c

Asthma (ICD code 493) < 65 PM2.5 Sheppard et al. (1999)

Asthma-related ER visits < 65 PM10 Schwartz et al. (1993)

COPD (ICD-9 codes 490-496) >64 PM10 Moolgavkar et al. (1997)

Pneumonia (ICD-9 codes 480-487) >64 PM10 Moolgavkar et al. (1997)

Respiratory Symptoms/Illnesses Not Requiring Hospitalization

Acute bronchitis Ages 8-12 PM2.5 Dockery et al. (1989)

Lower respiratory symptoms (LRS) Ages 7-14 PM2.5 Schwartz et al. (1994)

Upper respiratory symptoms (URS) Asthmatics, ages 9-11 PM10 Pope et al. (1991)

Minor restricted activity day (MRAD)
(adjusted for asthma attacks)

Ages 18-65 PM2.5

(estimated)
Ostro and Rothschild (1989), 

Work loss days (WLDs) Ages 18-65 PM2.5 Ostro (1987)

Asthma Attacks Asthmatics, all ages  PM10 Whittemore and Korn (1980)

Any of 19 respiratory symptoms Ages 18-65 PM10 Krupnick et al. (1990)
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Endpoint Population PM Study

Abt Associates Inc. December 20004-3

Moderate or worse asthma status Asthmatics, all ages PM2.5 Ostro et al. (1991),

Shortness of breath (days with) African-American
asthmatics,  ages 7-12

PM10 Ostro et al. (1995)

a Italicized entries are either alternative or supplemental calculations to the endpoints and/or studies used in the primary analysis.

b The incidence changes, and the associated monetized benefits, predicted by two studies are pooled.  The separate studies and the
method of pooling are described below.  

c The pooled estimate, based on distributed lag models in each of 14 cities, is used because the estimated coefficients based on
pooling are substantially more stable than the individual city-specific estimates.

Exhibit 4-2  Ozone-Related Health Endpoints

Endpoint Population to Which
Applied

Study

Chronic Illness

Chronic asthmaa non-asthmatic males, age
27+

McDonnell et al. (1999)

Hospital Admissions 

Respiratory varies by study Multiple studies b

Cardiovascular: Dysrhythmias Burnett et al. (1999)

Asthma-related ER visits varies by study Multiple studies b

Symptoms/Illnesses Not Requiring Hospitalization

Minor restricted activity day (MRAD) (adjusted for
asthma attacks)

Ages 18-65 Ostro and Rothschild (1989) 

Worker productivity Working population Crocker and Horst (1981) and EPA (1994)

Asthma attacks c Asthmatics, all ages Whittemore and Korn (1980)

Any of 19 respiratory symptoms Ages 18-65 Krupnick et al. (1990)

a Italicized entries are alternative or supplemental calculations to the endpoints and/or studies used in the primary analysis.

b The incidence changes, and the associated monetized benefits, predicted by several studies are pooled.  The separate studies and
the method of pooling are described below.

c We include the number of avoided asthma attacks in the primary analysis.  However, we present the value of these avoided attacks
as an alternative calculation.
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Exhibit 4-3  Unit Values for Economic Valuation of Health Endpoints (1999 $)

Health Endpoint Mean Estimate a Assumed Uncertainty Distribution a

Mortality

Value of a statistical life $6.12 million per statistical life Weibull distribution, mean = $6.12 million;
std. dev. = $4.13 million.

Value of a statistical life
year b

$2.8 million per statistical life
(mean of 14 years of life saved)

Based on the Weibull distribution for the value of a statistical
life, from which the value of a statistical life year is derived.

Chronic Bronchitis

WTP approach $331,000 per case A Monte Carlo-generated distribution, based on three underlying
distributions.

Chronic Asthma

WTP approach $31,875 per case Triangular distribution centered at $31,875 over the interval
[$24,225, $38,250].

Hospital Admissions

Pneumonia (ICD codes
480-487)  — d

 None available c

COPD (ICD codes 490-
492, 494-496)  — d

None available c

Respiratory  — d None available c

Cardiovascular  — d None available c

Asthma-related ER visits $298.62 per visit Triangular distribution centered at $299 over the interval
[$221.65, $414.07].

Respiratory Ailments Not Requiring Hospitalization 

Acute bronchitis $57.34 per case Continuous uniform distribution over [$16.57, $98.15].

Lower resp. Symptoms $15.30 per symptom-day Continuous uniform distribution over [$6.37, $24.22].

Upper resp. Symptoms $24.22 per symptom-day Continuous uniform distribution over [$8.93,$42.06].

 Minor restricted activity
day (MRAD)

 $48.43 per day Triangular distribution centered at $48.43 over [$20.34, $77.76].

Shortness of breath $6.76 per symptom-day Continuous uniform distribution over [$0, $13.51]

Work loss days $106 per day None available

Worker productivity Change in daily wages adjusted by
regional variations in income

None available

Asthma attacks $40.79 per symptom-day Continuous uniform distribution over [$15.30, $68.83]

Asthma – moderate or
worse

$40.79 per day of that asthma
status

Continuous uniform distribution over [$15.30, $68.83]

Any of 19 acute
respiratory symptoms

$22.95 per symptom-day Continuous uniform distribution over the interval [$0,$47.17].

Restricted activity day
(RAD)

Based on MRAD valuation Values based on MRAD valuation

a The derivation of each of the estimates is discussed in the text. All WTP-based dollar values were obtained by multiplying rounded
1990 $ values used in the §812 Prospective Analysis by 1.275 to adjust to 1999 $.  Entries in italics are not used in the primary
benefits analysis.
b Based on a 3 percent discount rate, a value of $284,325 per life year (in 1999 $), a five-year lag structure, 1997 life expectancies,
and 8,105 implied deaths (derived from the number of estimated life years lost). This is explained in greater detail in the text below.



Exhibit 4-3  Unit Values for Economic Valuation of Health Endpoints (1999 $) (cont.)

Abt Associates Inc. December 20004-5

c Standard errors were not available.  However, the sample sizes on which these estimates (from the Agency for Healthcare
Research and Policy’s Healthcare Cost and Utilization Project) are very large and the standard errors are therefore negligible.
d Definitions of endpoints vary by study.  For example, “all respiratory illnesses” includes ICD-9 codes 460-519 in some studies, but
only subsets of that group in other studies.  Cost of illness unit dollar values were derived for each separate set of ICD codes for
which a C-R model was estimated.  These are given below.

4.1 Premature Mortality

The effects of changes in PM concentrations on mortality may be estimated by a count of the
expected number of deaths avoided due to a given reduction in PM concentrations.  An alternative measure
is to infer the number of years of life that are saved by a given reduction in PM concentrations: years of life
that each individual was expected to live and that would have been lost had the reduction in PM
concentrations not occurred.  Both measures of mortality are estimated in this analysis to provide a range
of the possible cost of premature mortality.

Both ozone and particulate matter have been associated with increased risk of premature mortality,
which is a very important health endpoint in this economic analysis due to the high monetary value
associated with risks to life.  There are two types of exposure to elevated levels of air pollution that may
result in premature mortality.  Acute (short-term) exposure (e.g., exposure on a given day) to peak
pollutant concentrations may result in excess mortality on the same day or within a few days of the elevated
exposure.  Chronic (long-term) exposure (e.g., exposure over a period of a year or more) to levels of
pollution that are generally higher may result in mortality in excess of what it would be if pollution levels
were generally lower.  The excess mortality that occurs will not necessarily be associated with any
particular episode of elevated air pollution levels.

4.1.1 Short-Term Versus Long-Term Studies

There are two types of epidemiological studies that examine the relationship between mortality and
exposure.  Long-term studies (e.g., Pope et al., 1995) estimate the association between long-term (chronic)
exposure to air pollution and the survival of members of a large study population over an extended period
of time.  Such studies examine the health endpoint of concern in relation to the general long-term level of
the pollutant of concern, for example, relating annual mortality to some measure of annual pollutant level. 
Daily peak concentrations would impact the results only insofar as they affect the measure of long-term
(e.g., annual) pollutant concentration.  In contrast, short-term studies relate daily levels of the pollutant to
daily mortality.  By their basic design, daily studies can detect acute effects but cannot detect the effects of
long-term exposures.  A chronic exposure study design (a prospective cohort study, such as the Pope study)
is best able to identify the long-term exposure effects, and may detect some of the short-term exposure
effects as well.  Because a long-term exposure study may detect some of the same short-term exposure
effects detected by short-term studies, including both types of study in a benefit analysis would likely result
in some degree of double counting of benefits.  While the long-term study design is preferred, these types of
studies are expensive to conduct and consequently there are relatively few well designed long-term studies.



24Zeger et al. (1999, p.  171) reported that: “The TSP-mortality association in Philadelphia is inconsistent with the
harvesting-only hypothesis, and the harvesting-resistant estimates of the TSP relative risk are actually larger – not smaller – than the
ordinary estimates.”

Abt Associates Inc. December 20004-6

4.1.2 Degree of Prematurity of Mortality 

It is possible that the short-term studies are detecting an association between PM and mortality that
is primarily occurring among terminally ill people.  Critics of the use of short-term studies for policy
analysis purposes correctly point out that an added risk factor that results in terminally ill people dying a
few days or weeks earlier than they otherwise would have (referred to as “short-term harvesting”) is
potentially included in the measured PM mortality “signal” detected in such a study.  While some of the
detected excess deaths may have resulted in a substantial reduction in lifespan, others may have resulted in
a relatively small decrease in lifespan.  Studies by Spix et al (1993) and Pope et al. (1992) yield conflicting
evidence, suggesting that harvesting may represent anywhere from zero to 50 percent of the deaths
estimated in short-term studies.  However, recent work by Zeger et al. (1999) and Schwartz (2000a) that
focused exclusively on this issue, reported that short-term harvesting does not play a major role in the PM-
mortality relationship.24  

It is not likely, however, that the excess mortality reported in a long-term prospective cohort study
like Pope et al. (1995) contains any significant amount of this short-term harvesting.  The Cox proportional
hazard statistical model used in the Pope study examines the question of survivability throughout the study
period (ten years).  Deaths that are premature by only a few days or weeks within the ten-year study period
(for example, the deaths of terminally ill patients, triggered by a short duration PM episode) are likely to
have little impact on the calculation of the average probability of surviving the entire ten-year interval.

4.1.3 Estimating PM-Related Premature Mortality

The benefits analysis estimates PM2.5 -related mortality using the C-R function estimated by
Krewski et al. (2000).  This study is a reanalysis of Pope et al. (1995), which estimated the association
between long-term (chronic) exposure to PM2.5  and the survival of members of a large study population. 
Our decision to use Pope et al. in previous benefits analyses reflected the Science Advisory Board’s explicit
recommendation for modeling the mortality effects of PM in both the§812 Retrospective Report to
Congress and the §812 Prospective study (U.S. EPA, 1999a, p. 12).  An advantage of Krewski et al. over
Pope et al. is that  Krewski et al.’s reanalysis uses the annual mean PM2.5 concentration rather than the
annual median. Because the mean is more readily affected by high PM values than is the median, if high
PM days are actually important in causing premature mortality, the annual mean may be a preferable
measure of long-term exposure than the median.  

The Krewski et al. (2000) long-term study is selected for use in the benefits analysis instead of
short-term (daily pollution) studies for a number of reasons.  It is used alone– rather than considering the
total effect to be the sum of estimated short-term and long-term effects– because summing creates the
possibility of double-counting a portion of PM-related mortality.  The Krewski et al. study and the Pope
study it reanalyzes are considered preferable to other available long-term studies because they use better
statistical methods, have a much larger sample size, the longest exposure interval, and more locations (51
cities) in the United States, than other studies.  The Krewski study is considered preferable to the original
Pope et al. (1995) study it reanalyzes because it uses the annual mean PM rather than the median.   
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It is unlikely that the Krewski et al. (2000) study contains any significant amount of short-term
harvesting.  First, the health status of each individual tracked in the study is known at the beginning of the
study period.  Persons with known pre-existing serious illnesses were excluded from the study population. 
Second, the statistical model used in the Krewski et al. and Pope et al. (1995) studies examines the question
of survivability throughout the study period (ten years).  Deaths that are premature by only a few days or
weeks within the ten-year study period (for example, the deaths of terminally ill patients, triggered by a
short duration PM episode) are likely to have little impact on the calculation of the average probability of
surviving the entire ten year interval.  In relation to the “Six-cities” study by Dockery et al. (1993), both the
Krewski et al. study and the Pope et al. studies found smaller increases in excess mortality for a given PM
air quality change.

It is currently unknown whether there is a time lag (a delay between changes in PM exposures and
changes in mortality rates) in the chronic PM/premature mortality relationship.  The existence of such a lag
is important for the valuation of premature mortality incidences because economic theory suggests that
benefits occurring in the future should be discounted.  Although there is no specific scientific evidence of
the existence or structure of a PM effects lag, current scientific literature on adverse health effects, such as
those associated with PM (e.g., smoking related disease) and the difference in the effect size between
chronic exposure studies and daily mortality studies suggest that it is likely that not all incidences of
premature mortality reduction associated with a given incremental change in PM exposure would occur in
the same year as the exposure reduction.  This same smoking-related literature implies that lags of up to a
few years are plausible.  Following explicit advice from the SAB, we assume a five-year lag structure, with
25 percent of premature deaths occurring in the first year, another 25 percent in the second year, and 16.7
percent in each of the remaining three years (U.S. EPA, 1999d, p. 9).  It should be noted that the selection
of a five-year lag structure is not directly supported by any PM-specific literature.  Rather, it is intended to
be a best guess at the appropriate time distribution of avoided incidences of PM-related mortality.

Alternative Calculations: PM-Related Premature Mortality

Although we use the Krewski, et al. (2000) mean-based (“PM2.5(DC), All Causes”) model
exclusively to derive our primary estimates of avoided premature mortality, we also examine the impacts of
selecting alternative C-R functions for premature mortality.  There are several candidates for alternative C-
R functions, some from the Krewski, et al. study, and others from the original ACS study by Pope et al.
(1995) or from the “Harvard Six-City Study” by Dockery et al. (1993).  

The Krewski et al. (2000) reanalysis provides results for several models which control for spatial
correlations in the data.  These models are based on the original ACS air quality dataset, which contained
only median PM2.5 concentrations.  Ideally, our primary C-R function for premature mortality would be
both based on the mean and adjusted for regional variability.  Unfortunately, Krewski et al. do not provide
such an estimate.  As such, we have chosen to use the mean-based relative risk in our primary analysis and
to use the median-based regionally adjusted relative risks to provide alternative estimates exploring the
impact of adjustments for spatial correlations.

Krewski, et al. (2000) also reanalyzed the data from another prospective cohort study (the Harvard
“Six Cities Study”) authored by Dockery et al. (1993). The Dockery et al. study used a smaller sample of
individuals from fewer cities than the study by Pope et al. (1995); however, it features improved exposure
estimates, a slightly broader study population (adults aged 25 and older), and a follow-up period nearly
twice as long as that of Pope et al.  The SAB has noted that “the [Harvard Six Cities] study had better
monitoring with less measurement error than did most other studies” (U.S. EPA, 1999e, p. 10).
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The Dockery et al. (1993) study finds a larger effect of PM on premature mortality relative to the
Pope et al. (1995) study.  To provide a more complete picture of the range of possible premature mortality
risks that may be associated with long-term exposures to fine particles, we also present alternative
estimates based on the Krewski et al. (2000) reanalysis of the Dockery et al. data and the original study
estimates.  The Health Review Committee (2000, p. 270) commentary noted the “inherent limitations of
using only six cities, understood by the original investigators, should be taken into account when
interpreting the results of the Six Cities Study.” We emphasize, that based on our understanding of the
relative merits of the two datasets, the Krewski et al. ACS model based on mean PM2.5 levels in 63 cities is
the most appropriate model for analyzing the premature mortality impacts of the HD Engine/Diesel Fuel
rule.  It is thus used for our primary estimate of this important health effect. 

Some of the functions are based on changes in mean PM2.5 concentrations while others are based
on median PM2.5 concentrations.  Estimated reductions in premature mortality will depend on both the size
of the C-R coefficient and the change in the relevant PM2.5 metric (mean or median).  We also estimated
alternative premature mortality incidence using both non-accidental and all-cause mortality rates.  In
previous benefit analyses conducted for the EPA, premature mortality was calculated using non-accidental
mortality rates.  For the sake of comparability to previous analyses, we included estimates of premature
mortality based on both rates.

Sensitivity Calculation: Mortality Lag Structure

Just when PM-related mortality occurs in relation to exposure to PM is uncertain.  We do not
know what percentage of PM-related mortality occurs in the same year as exposure, in the following year,
and so forth.   To account for the uncertainty about possible lags in PM-related mortality, we examine the
sensitivity of mortality-related benefits to alternative lag structures.  Exhibit 4-4 presents the lags that are
used in these sensitivity calculations.  As stated earlier, the primary analysis uses a five-year lag structure
in the valuation of mortality and chronic bronchitis, with incidence apportioned as follows: 25 percent in
the first year, 25 percent in the second year, and 16.67 percent in each of the last three years.

To examine the effect alternate lag-structures have on the estimation of both mortality and chronic
bronchitis valuation, the mortality benefits will be calculated using five alternative lag structures.  Lag 1
will apportion the occurrence of all incidence to the first year.  Valuation of these cases will not be
discounted.  In lag 2, based on the length of the study period for the Dockery et al. (1993) study, 100
percent of mortality incidence occurs in fifteen years from the modeled future-year.  Lag 3, based on the
length of the study period for the Pope et al. (1995) study, assigns 100 percent of the occurrence of
mortality incidence to the eighth year out from the modeled future-year.  Lag 4 front loads the occurrence
of mortality incidence.  Incidence is apportioned in decreasing amounts out to fifteen years.  Lag 5
apportions incidence over fifteen years, assigning a lesser percentage of incidence in the beginning years,
with the percentage of incidence increasing over time out to fifteen years.  The latter two lag structures are
intended to show how the distribution of incidences within a lag period affects benefit estimates.

Sensitivity Calculation: Threshold Analysis

To examine the effect an implied PM threshold has on the estimation of health effects in this
analysis, we applied an increasingly stringent threshold to the Krewski et al. (2000) mortality function in
one ug/m3 increments.  The results of this sensitivity analysis can be found in Appendix A.
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Exhibit 4-4  Mortality Lag Structure

Year Primary Sensitivity 1 Sensitivity 2 Sensitivity 3 Sensitivity 4 Sensitivity 5

1 25 100 0 0 30 1

2 25 0 0 0 25 1

3 16.67 0 0 0 15 1

4 16.67 0 0 0 6 2

5 16.67 0 0 0 4 2

6 0 0 0 0 3 2

7 0 0 0 0 3 2

8 0 0 0 100 3 3

9 0 0 0 0 2 3

10 0 0 0 0 2 3

11 0 0 0 0 2 4

12 0 0 0 0 2 6

13 0 0 0 0 1 15

14 0 0 0 0 1 25

15 0 0 100 0 1 30

Supplemental Calculation: Ozone-Related Mortality

Epidemiological studies suggest that there may be a link between ozone exposures and premature
mortality, however possible confounding with PM-related mortality precludes its inclusion in the primary
analysis.  As an alternative, an ozone-related mortality meta-analysis was conducted to provide an
alternative calculation of mortality incidence.  Using a random-effects pooling procedure, we take the
incidence estimates of four U.S. ozone-related mortality studies -- Ito and Thurston (1996), Kinney et al.
(1995), Moolgavkar et al. (1995), and Samet et al. (1997) -- and estimate the mortality incidence changes
for a given rule.  For a complete discussion of ozone mortality and the pooling procedure, see the Technical
Support Document for the proposed Tier II rule (Abt Associates Inc., 1999b).

Supplemental Calculation: Short-Term Exposure Mortality

Schwartz et al. (1996) estimated a relationship between daily PM2.5 and daily mortality in six U.S.
cities.  As noted above, however, because a long-term exposure study may detect some of the same short-
term exposure effects detected by short-term studies, including both types of study in a benefit analysis
would likely result in some degree of double counting of benefits.  We therefore pooled the six city-specific
results from Schwartz et al., which are presented as a supplemental calculation.

Supplemental Calculation: Neonatal Mortality

Woodruff et al. (1997) associated changes in annual PM10 levels with changes in post-neonatal
mortality of infants aged 28 to 364 days.  Conceptually, any additional mortality from this function could
be added to the premature mortality predicted by Krewski et al. (2000), because the Krewski et al.
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reanalysis of the Pope et al. (1995) function covers only the population over 29 years old.  The EPA Clean
Air Council, in advice issued during the §812 Prospective Analysis, recommended that this endpoint not be
included because it was a new endpoint that had not been replicated in other studies in the U.S. (U.S. EPA,
1999a, p. 12).  The Council deemed that the coherence and consistency arguments which support the use of
other studies are not present with this study.  Instead, results for this endpoint are presented as a
supplemental calculation to the primary analysis.

4.1.4 Valuing Premature Mortality

Three methods for valuing avoided premature mortality are presented in this analysis.  The first
and primary one is the “statistical lives lost” approach, which derives the value of a “statistical life” lost
from information about what people are willing to pay for mortal risk reduction.  In contrast to the
“statistical lives lost” approach, the second and third valuation approaches try to take into account that an
individual’s willingness to pay for mortal risk reduction may depend on his age.  Using these approaches,
the value of an avoided premature death depends on the age at which the individual dies.  In all three
methods, we assume for this analysis that PM-related premature mortality is distributed over the five years
following exposure (the five-year mortality lag).  To take this into account in the valuation of reductions in
premature deaths, we apply an annual three percent discount rate to the value of avoided premature deaths
occurring in future years.

Statistical Lives Lost

The estimated value of a “statistical life lost” is an intermediate value from a variety of estimates in
the economics literature, and is a value that EPA has frequently used in RIAs for other rules.  This estimate
is the mean of a distribution fitted to the estimates from 26 value-of-life studies identified in the §812 study
as “applicable to policy analysis.”  The approach and set of selected studies mirrors that of Viscusi (1992)
(with the addition of two studies), and uses the same criteria used by Viscusi in his review of value-of-life
studies.  The estimate is consistent with Viscusi’s conclusion (updated to 1999 $) that “most of the
reasonable estimates of the value of life are clustered in the $3.8 to $8.9 million range.”  Uncertainty
associated with the valuation of premature mortality avoided is expressed through a Weibull distribution
(see Exhibit 4-3) (IEc 1992, p.  2).

Five of the 26 studies are contingent valuation (CV) studies, which directly solicit WTP
information from subjects; the rest are wage-risk studies, which base WTP estimates on estimates of  the
additional compensation demanded in the labor market for riskier jobs.  The 26 studies are listed in Exhibit
4-5.  The references for all but Gegax et al. (1985) and V.K. Smith (1983) may be found in Viscusi (1992). 
Although each of the studies estimated the mean WTP (MWTP) for a given reduction in mortality risk, the
amounts of reduction in risk being valued were not necessarily the same across studies, nor were they
necessarily the same as the amounts of reduction in mortality risk that would actually be conferred by a
given reduction in ambient pollutant concentrations.  

The transferability of estimates of the value of a statistical life from the 26 studies to this analysis
rests on the assumption that, within a reasonable range, WTP for reductions in mortality risk is linear in
risk reduction, or equivalently, that the marginal willingness to pay curve is horizontal within a reasonable
range.  For example, suppose a study estimates that the average WTP for a reduction in mortality risk of
1/100,000 is $30.  Suppose, however, that the actual mortality risk reduction resulting from a given air
quality improvement is 1/10,000.  If WTP for reductions in mortality risk is linear in risk reduction, then a
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WTP of $30 for a reduction of 1/100,000 implies a WTP of $300 for a risk reduction of 1/10,000 (which
is ten times the risk reduction valued in the study).  Under the assumption of linearity, the estimate of the
value of a statistical life does not depend on the particular amount of risk reduction being valued.

Exhibit 4-5  Summary of Mortality Valuation Estimates

Study Type of Estimate Valuation (millions 1999 $)

Kneisner and Leeth (1991) (US) Labor Market 0.7

Smith and Gilbert (1984) Labor Market 0.9

Dillingham (1985) Labor Market 1.1

Butler (1983) Labor Market 1.5

Miller and Guria (1991) Contingent Valuation 1.6

Moore and Viscusi (1988) Labor Market 3.2

Viscusi et al. (1991) Contingent Valuation 3.4

Gegax et al. (1985; 1991) Contingent Valuation 4.3

Marin and Psacharopoulos (1982) Labor Market 3.5

Kneisner and Leeth (1991) (Australia) Labor Market 4.3

Gerking et al. (1988) Contingent Valuation 4.4

Cousineau et al. (1988; 1992) Labor Market 4.6

Jones-Lee (1989) Contingent Valuation 4.9

Dillingham (1985) Labor Market 5.1

Viscusi (1978; 1979) Labor Market 5.2

R.S. Smith (1976) Labor Market 5.8

V.K. Smith (1983) Labor Market 6.0

Olson (1981) Labor Market 6.6

Viscusi (1981) Labor Market 8.3

R.S. Smith (1974) Labor Market 9.1

Moore and Viscusi (1988) Labor Market 9.3

Kneisner and Leeth (1991) (Japan) Labor Market 9.7

Herzog and Schlottman (1987; 1990) Labor Market 11.6

Leigh and Folson (1984) Labor Market 12.4

Leigh (1987) Labor Market 13.3

Garen (1988) Labor Market 17.2

Source: Viscusi (1992, Table 4.1).

Although the particular amount of mortality risk reduction being valued in a study may not affect
the transferability of the WTP estimate from the study to this analysis, the characteristics of the study
subjects and the nature of the mortality risk being valued in the study could be important.  Certain
characteristics of both the population affected and the mortality risk facing that population are believed to
affect the MWTP to reduce the risk.  The appropriateness of the MWTP estimates from the 26 studies for
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valuing the mortality-related benefits of reductions in ambient air concentrations therefore depends not only
on the quality of the studies (i.e., how well they measure what they are trying to measure), but also on (1)
the extent to which the subjects in the studies are similar to the population affected by changes in ambient
air concentrations and (2) the extent to which the risks being valued are similar. 

Focusing on the wage-risk studies, which make up the substantial majority of the 26 studies relied
upon, the likely differences between (1) the subjects in these studies and the population affected by changes
in air concentrations and (2) the nature of the mortality risks being valued in these studies and the nature of
air pollution-related mortality risk are considered. The direction of bias in which each difference is likely to
result is also considered.  

Compared with the subjects in wage-risk studies, the population believed to be most affected by air
pollution (i.e., the population that would receive the greatest mortality risk reduction associated with a
given reduction in air concentrations) is, on average, older and probably more risk averse.  For example,
citing Schwartz and Dockery (1992) and Ostro et al. (1996), Chestnut (1995) estimated that approximately
85 percent of those who die prematurely from ambient air pollution-related causes are over 65.  The
average age of subjects in wage-risk studies, in contrast, is well under 65.

There is also reason to believe that those over 65 are, in general, more risk averse than the general
population while workers in wage-risk studies are likely to be less risk averse than the general population. 
Although Viscusi’s (1992) list of recommended studies excludes studies that consider only much-higher-
than-average occupational risks, there is nevertheless likely to be some selection bias in the remaining
studies -- that is, these studies are likely to be based on samples of workers who are, on average, more risk-
loving than the general population.  In contrast, older people as a group exhibit more risk averse behavior.   

In addition, it might be argued that because the elderly have greater average wealth than those
younger, the affected population is also wealthier, on average, than wage-risk study subjects, who tend to
be blue collar workers.  It is possible, however, that among the elderly it is largely the poor elderly who are
most vulnerable to air pollution-related mortality risk (e.g., because of generally poorer health care).  If this
is the case, the average wealth of those affected by a reduction in air concentrations relative to that of
subjects in wage-risk studies is uncertain.  

The direction of bias resulting from the age difference is unclear, particularly because age is
confounded by risk aversion (relative to the general population).  It could be argued that, because an older
person has fewer expected years left to lose, his WTP to reduce mortality risk would be less than that of a
younger person.  This hypothesis is supported by one empirical study, Jones-Lee et al.(1985), that found
the value of a statistical life at age 65 to be about 90 percent of what it is at age 40.  Citing the evidence
provided by Jones-Lee et al., Chestnut (1995) assumed that the value of a statistical life for those 65 and
over is 75 percent of what it is for those under 65.

The greater risk aversion of older people, however, implies just the opposite.  Citing Ehrlich and
Chuma (1990), Industrial Economics Inc. (1992) noted that “older persons, who as a group tend to avoid
health risks associated with drinking, smoking, and reckless driving, reveal a greater demand for reducing
mortality risks and hence have a greater implicit value of a life year.”  That is, the more risk averse
behavior of older individuals suggests a greater WTP to reduce mortality risk.

There is substantial evidence that the income elasticity of WTP for health risk reductions is
positive (Loehman and De, 1982; Jones-Lee et al., 1985; Mitchell and Carson, 1986; Gerking et al., 1988;
Alberini et al., 1997).  However, there is uncertainty about the exact value of this elasticity.  Individuals
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with higher incomes (or greater wealth) should, then, be willing to pay more to reduce risk, all else equal,
than individuals with lower incomes or wealth.  Whether the average income or level of wealth of the
population affected by ambient air pollution reductions is likely to be significantly different from that of
subjects in wage-risk studies, however, is unclear.

Finally, although there may be several ways in which job-related mortality risks differ from air
pollution-related mortality risks, the most important difference may be that job-related risks are incurred
voluntarily whereas air pollution-related risks are incurred involuntarily.

There is some evidence that people will pay more to reduce involuntarily incurred risks than risks
incurred voluntarily (e.g., Violette and Chestnut, 1983).  Job-related risks are incurred voluntarily whereas
air pollution-related risks are incurred involuntarily.  If this is the case, WTP estimates based on wage-risk
studies may be downward biased estimates of WTP to reduce involuntarily incurred ambient air pollution-
related mortality risks.

The potential sources of bias in an estimate of MWTP to reduce the risk of air pollution related
mortality based on wage-risk studies are summarized in Exhibit 4-6.  Although most of the individual
factors tend to have a downward bias, the overall effect of these biases is unclear.

Exhibit 4-6  Potential Sources of Bias in Estimates of Mean WTP to Reduce the Risk of PM Related
Mortality Based on Wage-Risk Studies

Factor Likely Direction of Bias in Mean WTP Estimate

Age Uncertain

Degree of Risk Aversion Downward

Income Downward, if the elderly affected are a random sample of the elderly. It is
unclear, if the elderly affected are the poor elderly.

Risk Perception: Voluntary vs. Involuntary risk Downward

Alternative Calculation: Statistical Life-Years Lost

In an alternative calculation, we value statistical life-years, rather than valuing statistical lives. 
Moore and Viscusi (1988) value a statistical life-year lost, by assuming that the WTP to save a statistical
life is the value of a single year of life times the expected number of years of life remaining for an
individual.  They suggest that a typical respondent in a mortal risk study has a life expectancy of an
additional 35 years.  Using a mean estimate of $4.8 million (1990 $) to save a statistical life, their
approach yields an estimate of $137,000 per life-year lost or saved, assuming no discounting.  If an
individual discounts future additional years using a standard discounting procedure, the value of each life-
year lost must be greater than the value assuming no discounting.  Using a 35 year life expectancy, a $6.12
million value of a statistical life, and a three percent discount rate, the implied value of each life-year lost is
$284,325 in 1999 dollars.  

In addition, the “statistical life-years lost” analysis must accommodate the five-year lag structure. 
For each person dying at a given age, using the expected number of years remaining for that age, based on
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1997 life expectancy tables (National Center for Health Statistics, 1999, Table 5), and a VSLY of
$284,325, we calculate the present discounted value (discounted back to the beginning of the year of death)
for that person.  All values are then discounted back to the beginning of 2030, whether the individual dies
in 2030 or in a subsequent year.  The present discounted value (discounted back to the beginning of 2030)
of an avoided premature mortality will vary from one individual to another, depending on the age of the
individual at death and on the extent of lag between exposure and death.  The age at death determines the
expected number of life-years lost, while the extent of lag between exposure and death determines the
amount of discounting needed. 

Alternative Calculation: Age-Based Adjustments of the Value of a Statistical Life Lost

There are drawbacks to the “statistical life-years lost” approach, however.  In a recent report, the
Scientific Advisory Board (SAB) notes that “inferring the value of a statistical life year ... requires
assumptions about the discount rate and about the time path of expected utility of consumption” (U.S.
EPA, 2000a, p. 8).  In considering the merits of age-based adjustments, the SAB also notes that “the
theoretically appropriate method is to calculate WTP for individuals whose ages correspond to those of the
affected population, and that it is preferable to base these calculations on empirical estimates of WTP by
age.”  Several studies conducted by Jones-Lee, et al. (1985; 1989; 1993) found a significant effect of age
on the value of mortality risk reductions expressed by citizens in the United Kingdom.  The Jones-Lee-
based analysis suggests a U-shaped relationship between age and VSL, peaking around age 40, and
declining to between 60 and 90 percent of the mean VSL value for individuals over the age of 70, and
declining further as individuals age.  This finding has been supported by two recent analyses conducted by
Krupnick, et al. (2000; 2000), which asked samples of Canadian and U.S. residents their values for
reductions in mortality risk.

The results of the Jones-Lee et al. analysis were used to calculate age-based adjustment factors to
adjust the value of a statistical life lost by an individual of about age 40 (the average age in the wage-risk
studies on which the value of a statistical life is based in the primary method), to age-specific values.  For
example, Jones-Lee et al. (1989) found that people ages 30-39 were willing to pay 89 percent as much as
people ages 40-59 for the same mortality risk reduction.  If the value of a statistical life saved of someone
40 years old is $6.12 million, then the value of a statistical life saved of someone age 30-39 would be 89
percent of that, or $5.45 million.  Numbers of lives saved in each of the age groups used in the statistical
life-years-lost alternative calculation were apportioned to the age groups used by Jones-Lee et al. (1989;
1993).  The number of lives saved in an age group was then multiplied by the age-adjusted value of a
statistical life saved for that age group.  The value of a statistical life saved in an age group was calculated
as $6.12 million times the ratio of the WTP for mortality risk reduction in that age group to the WTP for
mortality risk reduction in the age 40-59 group, as reported by Jones-Lee et al. (1989; 1993) .  The five-
year lag structure used in the primary method was applied under two alternative discount rate assumptions
of three percent and seven percent. Because the two Jones-Lee studies reported different ratios, this
alternative calculation was carried out separately using each of the two Jones-Lee studies. 

4.2 Chronic Illness

Onset of bronchitis and asthma, two chronic illnesses, have both been associated with exposure to
air pollutants.  Three studies have linked the onset of chronic bronchitis in adults to particulate matter; one
study has linked the onset of chronic asthma in adults to ozone.  These results are consistent with research



25  This assumption implies that the observed relationship between chronic bronchitis and PM10 in the Schwartz (1993)
study is equally attributable to the fine and coarse fractions of PM10.  If the relationship is due primarily to the fine fraction, then the
estimate of avoided incidences associated with coarse fraction PM changes will be overstated.  However, if this is the case then the
estimate of avoided incidences associated with fine fraction will be somewhat understated.  The net effect on avoided incidences of
chronic bronchitis is ambiguous.
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that has found chronic exposure to pollutants leads to declining pulmonary functioning (Detels et al., 1991;
Ackermann-Liebrich et al., 1997; Abbey et al., 1998).

4.2.1 Chronic Bronchitis

We estimate the changes in the number of new cases of PM-related chronic bronchitis using studies
by Schwartz (1993) and Abbey et al. (1995b).  The Schwartz study is somewhat older and uses a cross-
sectional design; however, it is based on a national sample, unlike the Abbey et al. study which is based on
a sample of California residents.  Our analysis pools the estimates from these studies to develop a C-R
function linking PM to chronic bronchitis.  The Schwartz study examined the relationship between
exposure to PM10 and prevalence of chronic bronchitis.  The Abbey et al. study examined the relationship
between PM2.5 and new incidences of chronic bronchitis.  Both studies have strengths and weaknesses
which suggest that pooling the effect estimates from each study may provide a better estimate of the
expected change in incidences of chronic bronchitis than using either study alone.

However, the HD Engine/Diesel Fuel rule is expected to result in reductions in both the fine and
coarse fractions of PM10.  As such, reliance on the Abbey et al. (1995b) estimate will result in an
underestimate of the change in chronic bronchitis incidences if both the fine and coarse fractions of PM10

are associated with chronic bronchitis.  To address this problem, we apply the C-R functions from both
Schwartz (1993) and Abbey, et al. to generate the changes in chronic bronchitis incidences associated with
the change in PM2.5 and then pool the incidence estimates to obtain a primary estimate of avoided PM2.5

related chronic bronchitis incidences.  We then apply the Schwartz C-R function to the change in coarse
PM (PM2.5-10) to obtain a primary estimate of avoided incidences of chronic bronchitis due to the change in
coarse fraction PM.  The primary estimate of total avoided incidences is then the sum of the avoided
incidences from changes in PM2.5 and PM2.5-10.

25   The two studies used in our pooled estimate are listed in
Exhibit 4-7.

Exhibit 4-7  Chronic Bronchitis Studies

Location Study Pollutants Used in Final Model Age of Study
Population

California Abbey et al. (1995b) PM2.5 >26

United States Schwartz (1993) PM10 >29

Alternative Calculation: Chronic Bronchitis Reversals

In developing the C-R functions for chronic bronchitis, it is necessary to estimate its annual
incidence rate.  The annual incidence rate is derived by taking the number of new cases (234), dividing by



26The percentage of reversals is estimated to be 46.6% based on Abbey et al. (1995a, Table 1).
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the number of individuals in the sample (3,310), as reported by Abbey et al.(1993, Table 3), dividing by
the ten years covered in the sample, and then multiplying by one minus the reversal rate.26  Reversals refer
to those cases of chronic bronchitis that were reported at the start of the Abbey et al. survey, but were
subsequently not reported at the end of the survey.  Since we assume that chronic bronchitis is a permanent
condition, we subtract these reversals.  Nevertheless, reversals may likely represent a real effect that should
be included in the analysis.  To allow for this possibility, we present an estimate of reversals in an
alternative calculation in which reversals are considered to be chronic bronchitis cases of the lowest
severity level, as described below.

Valuing Chronic Bronchitis

PM-related chronic bronchitis is expected to last from the initial onset of the illness throughout the
rest of the individual’s life.  WTP to avoid chronic bronchitis would therefore be expected to incorporate
the present discounted value of a potentially long stream of costs (e.g., medical expenditures and lost
earnings) and pain and suffering associated with the illness.  Two studies, Viscusi et al. (1991) and
Krupnick and Cropper (1992),  provide estimates of WTP to avoid a case of chronic bronchitis.

The Viscusi et al. (1991) and the Krupnick and Cropper (1992) studies were experimental studies
intended to examine new methodologies for eliciting values for morbidity endpoints.  Although these studies
were not specifically designed for policy analysis, we believe the studies provide reasonable estimates of the
WTP for chronic bronchitis.  As with other contingent valuation studies, the reliability of the WTP
estimates depends on the methods used to obtain the WTP values.  The Viscusi et al. and the Krupnick and
Cropper studies are broadly consistent with current contingent valuation practices, although specific
attributes of the studies may not be.

The study by Viscusi et al. (1991) uses a sample that is larger and more representative of the
general population than the study by Krupnick and Cropper (1992), which selects people who have a
relative with the disease.  Thus, the valuation for the high-end estimate is based on the distribution of WTP
responses from Viscusi et al.  The WTP to avoid a case of pollution-related chronic bronchitis (CB) is
derived by starting with the WTP to avoid a severe case of chronic bronchitis, as described by Viscusi et al.
(1991), and adjusting it downward to reflect (1) the decrease in severity of a case of pollution-related CB
relative to the severe case described in the Viscusi et al. study, and (2) the elasticity of WTP with respect to
severity reported in the Krupnick and Cropper study.  Because elasticity is a marginal concept and because
it is a function of severity (as estimated from Krupnick and Cropper), WTP adjustments were made
incrementally, in one percent steps.  A severe case of CB was assigned a severity level of 13 (following
Krupnick and Cropper).  The WTP for a one percent decrease in severity is given by:

where sev is the original severity level (which, at the start, is 13) and e is the elasticity of WTP with respect
to severity.  Based on the regression in Krupnick and Cropper (1992) (see below), the estimate of e is
0.18*sev.  At the mean value of sev (6.47), e = 1.16.  As severity decreases, however, the elasticity
decreases.  Using the regression coefficient of 0.18, the above equation can be rewritten as:



27There is an indication in the Viscusi et al. (1991) paper that the dollar values in the paper are in 1987 dollars.  Under this
assumption, the dollar values were converted to 1999 dollars.
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WTP WTP WTP12 87 0 9913 13 1 0 01 018 13. . ( . . )= = ⋅ − ⋅ ⋅⋅

WTP WTP WTP12 74 0 99 12 87 12 87 1 0 01 018 12 87. . . . ( . . . )= = ⋅ − ⋅ ⋅⋅

WTP WTP WTP12 61 0 99 12 74 12 74 1 0 01 018 12 74. . . . ( . . . )= = ⋅ − ⋅ ⋅⋅

For a given WTPsev and a given coefficient of sev (0.18), the WTP for a 50 percent reduction in severity
can be obtained iteratively, starting with sev =13, as follows:

and so forth.  This iterative procedure eventually yields WTP6.5, or WTP to avoid a case of chronic
bronchitis that is of “average” severity.

The derivation of the WTP to avoid a case of pollution-related chronic bronchitis is based on three
components, each of which is uncertain: (1) the WTP to avoid a case of severe CB, as described in the
Viscusi et al. (1991) study, (2) the severity level of an average pollution-related case of CB (relative to that
of the case described by Viscusi et al.), and (3) the elasticity of WTP with respect to severity of the illness. 
Because of these three sources of uncertainty, the WTP is uncertain.  Based on assumptions about the
distributions of each of the three uncertain components, a distribution of WTP to avoid a pollution-related
case of CB was derived by Monte Carlo methods.  The mean of this distribution is taken as the central
tendency estimate of WTP to avoid a pollution-related case of CB.  Each of the three underlying
distributions is described briefly below.  

1.  The distribution of WTP to avoid a severe case of CB was based on the distribution of WTP
responses in the Viscusi et al. (1991) study.  Viscusi et al. derived  respondents’ implicit WTP to avoid a
statistical case of chronic bronchitis from their WTP for a specified reduction in risk.  The mean response
implied a WTP of about $1,275,000 (1999 $)27; the median response implied a WTP of about $676,000
(1999 $).  However, the extreme tails of distributions of WTP responses are usually considered unreliable. 
Because the mean is much more sensitive to extreme values, the median of WTP responses is often used
rather than the mean.  Viscusi et al. report not only the mean and median of their distribution of WTP
responses, however, but the decile points as well.  The distribution of reliable WTP responses from the
Viscusi et al. study could therefore be approximated by a discrete uniform distribution giving a probability
of 1/9 to each of the first nine decile points.  This omits the first five and the last five percent of the
responses (the extreme tails, considered unreliable).  This trimmed distribution of WTP responses from the
Viscusi et al. study was assumed to be the distribution of WTPs to avoid a severe case of CB.  
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2.  The distribution of the severity level of an average case of pollution-related CB was modeled as
a triangular distribution centered at 6.5, with endpoints at 1.0 and 12.0.  These severity levels are based on
the severity levels used in Krupnick and Cropper (1992), which estimated the relationship between
ln(WTP) and severity level, from which the elasticity is derived.  The most severe case of CB in that study
is assigned a severity level of 13.  The mean of the triangular distribution is 6.5.  This represents a 50
percent reduction in severity from a severe case.  

3.  The elasticity of WTP to avoid a case of CB with respect to the severity of that case of CB is a
constant times the severity level.  This constant was estimated by Krupnick and Cropper (1992) in the
regression of ln(WTP) on severity, discussed above.  This estimated constant (regression coefficient) is
normally distributed with mean = 0.18 and standard deviation = 0.0669 (obtained from Krupnick and
Cropper).

The distribution of WTP to avoid a case of pollution-related CB was generated by Monte Carlo
methods, drawing from the three distributions described above.  On each of 16,000 iterations (1) a value
was selected from each distribution, and (2) a value for WTP was generated by the iterative procedure
described above, in which the severity level was decreased by one percent on each iteration, and the
corresponding WTP was derived.  The mean of the resulting distribution of WTP to avoid a case of
pollution-related CB was $331,000.

This WTP estimate is reasonably consistent with full COI estimates derived for chronic bronchitis,
using average annual lost earnings and average annual medical expenditures reported by Cropper and
Krupnick (1990)  Using a 5 percent discount rate and assuming that (1) lost earnings continue until age 65,
(2) medical expenditures are incurred until death, and (3) life expectancy is unchanged by chronic
bronchitis, the present discounted value of the stream of medical expenditures and lost earnings associated
with an average case of chronic bronchitis is estimated to be about $113,000 for a 30 year old, about
$109,000 for a 40 year old, about $100,000 for a 50 year old, and about $57,000 for a 60 year old.  A
WTP estimate would be expected to be greater than a full COI estimate, reflecting the willingness to pay to
avoid the pain and suffering associated with the illness.  The WTP estimate of $331,000 is from 2.9 times
the full COI estimate (for 30 year olds) to 5.8 times the full COI estimate (for 60 year olds). 

Alternative Calculation: Valuing Chronic Bronchitis Reversals

In an alternative calculation, we estimate chronic bronchitis reversals and value them using the
same method used to value cases of chronic bronchitis.  However, instead of allowing the severity level to
range from one to 13, we value all reversals at a severity level of one. 

4.2.2 Sensitivity Calculation:  Chronic Asthma

In a number of studies ozone, PM, and even CO have been linked to acute asthmatic complaints
(e.g., Whittemore and Korn, 1980; Ostro et al., 1995; Sheppard et al., 1999), however there is more limited
evidence regarding the link between air pollution and the development of asthma.  The best evidence points
to ozone.  Abbey et al. (1991; 1993) reported a significant link between ozone and the development of
asthma, and Portney and Mullahy (1990) found ozone linked to sinusitis and hay fever.  A review of
research data by the EPA (1996b, p. 9-35) concluded that prolonged ozone exposure causes structural
changes in several regions of the respiratory tract, and the available epidemiological studies are suggestive
of a link  between chronic health effects in humans and long-term ozone exposure.  And most recently, a
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study by McDonnell et al. (1999) carefully measured ozone exposure over 15 years, and found ozone
exposure was linked to the onset of asthma in adult males.

The McDonnell et al. (1999) study used the same cohort of Seventh-Day Adventists as Abbey et
al. (1991; 1993), and examined the association between air pollution and the onset of asthma in adults
between 1977 and 1992.  Males who did not report doctor-diagnosed asthma in 1977, but reported it in
1987 or 1992, had significantly higher ozone exposures, controlling for other covariates; no significant
effect was found between ozone exposure and asthma in females.  No significant effect was reported for
females or males due to exposure to PM, NO2, SO2, or SO4.

Some questions have been raised about the statistical validity of the associations found in this
study and the appropriateness of transferring the estimated C-R function from the study populations (white,
non-Hispanic males) to other male populations (i.e. African-American males).  Some of these concerns
include the following: 1) no significant association was observed for female study participants also exposed
to ozone; 2) the estimated C-R function is based on a cross-sectional comparison of ozone levels, rather
than incorporating information on ozone levels over time; 3) information on the accuracy of self-reported
incidence of chronic asthma was collected but not used in estimating the C-R function; 4) the study may not
be representative of the general population because it included only those individuals living 10 years or
longer within 5 miles of their residence at the time of the study; and 5) the study had a significant number
of study participants drop out, either through death, loss of contact, or failure to provide complete or
consistent information.  While these issues may result in increased uncertainty about this effect, however,
none can be identified with a specific directional bias in the estimates.  In addition, the SAB reviewed the
study and deemed it appropriate for quantification of changes in ozone concentrations in benefits analyses
(U.S. EPA, 1999d, p. 6).  Because of the sources of uncertainty listed above, however, further investigation
by the scientific community to confirm the statistical association identified in the McDonnell et al. study is
advisable. 

Valuing Chronic Asthma

Two studies have estimated WTP to avoid chronic asthma in adults.  Blumenschein and
Johannesson (1998) used two different contingent valuation (CV) methods, the dichotomous choice method
and a bidding game, to estimate mean willingness to pay for a cure for asthma.  The mean WTP elicited
from the bidding game was $189 per month, or $2,268 per year (in 1996$).  The mean WTP elicited from
the dichotomous choice approach was $343 per month, or $4,116 per year (in 1996$).  Using $2,268 per
year, a five percent discount rate, and 1997 life expectancies for males in the United States (National
Center for Health Statistics, 1999, Table 5), the present discounted value of the stream of annual WTPs is
about $38,250 (in 1999 $).

O’Conor and Blomquist (1997) estimated WTP to avoid chronic asthma from estimates of risk-risk
tradeoffs.  Combining the risk-risk tradeoffs with a statistical value of life, the annual value of avoiding
asthma can be derived.  Assuming a value of a statistical life of $6 million, they derived an annual WTP to
avoid asthma of $1500 (O'Connor and Blomquist, 1997, p. 677).  For a value of a statistical life of
$5,894,400 (in 1997 $), the corresponding implied annual value of avoiding chronic asthma, based on
O’Conor and Blomquist would be $1,474.  Assuming a five percent discount rate and 1997 life



28 Because chronic asthma is simply an alternative calculation, we present a single estimate based on a five percent discount
rate, rather than present separate estimates based on three percent and seven percent discount rates.
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expectancies for males in the United States, the present discounted value of the stream of annual WTPs
would be about $24,225 (in 1999 $).28

Following the method used for the §812 Prospective analysis, the uncertainty surrounding the WTP
to avoid a case of chronic asthma among adult males was characterized by a triangular distribution on the
range determined by the two WTP estimates.  The range used in the §812 Prospective analysis was
[$24,225, $38,250], centered at $31,875 (in 1999 $).  In the current analysis these dollar values are
converted to 1999 $ using the CPI-U for “all items.” 

4.3 Hospital Admissions

We estimate the impact of ozone and PM on both respiratory and cardiovascular hospital
admissions.  In addition, we estimate the impact of these pollutants on emergency room visits for asthma. 
The respiratory and cardiovascular hospital admissions studies used in the primary analysis are listed in
Exhibits 4-8 and 4-9, respectively.  (Appendices B and C provide details on each study.)  Although the
benefits associated with respiratory and cardiovascular hospital admissions are estimated separately in the
analysis, the methods used to estimate changes in incidence and to value those changes are the same for
both broad categories of hospital admissions.  The two categories of hospital admissions are therefore
discussed together in this section. 
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Exhibit 4-8  Respiratory Hospital Admission Studies

Location Study Endpoints Estimated
(ICD code)

Pollutants Used in Final Model Age of
Study

Population

PM-Related Hospital Admissions

Fourteen U.S.
Cities*

Samet et al. (2000a) pneumonia (480-487); COPD 
(490-492, 494-6)

PM10 >64

Seattle, WA Sheppard et al.
(1999)

asthma (493) PM2.5 <65

Minneapolis-St.
Paul, MN

Moolgavkar et al., 
(1997)

pneumonia (480-487); COPD
(490-496)

O3, PM10 (pneumonia); O3, PM10

(COPD)
>64

Ozone-Related Hospital Admissions

Toronto, Canada Burnett et al. (1997) all respiratory (464-466, 480-
486, 490-494, 496)

PM10-2.5, O3 all ages

Toronto, Canada Burnett et al. (1999) asthma (493); respiratory
infection (464, 466, 480-487,
494); COPD (490-492, 496)

O3, PM10-2.5 (asthma); O3, PM2.5

(respiratory infection); O3, PM10-

2.5 (COPD) 

all ages

Toronto, Canada Thurston et al. (1994) all respiratory (466, 480-482,
485, 490-493)

O3, PM2.5 all ages

Minneapolis-St.
Paul, MN

Moolgavkar et al.
(1997)

pneumonia (480-487); COPD 
(490-496)

O3, PM10 (pneumonia); O3, PM10

(COPD)
>64

Minneapolis-St. 
Paul, MN

Schwartz (1994a) pneumonia (480-486); COPD
(490-496)

O3, PM10 (pneumonia); PM10

(COPD)
>64

Detroit, MI Schwartz (1994b)  pneumonia (480-486); non-
asthma COPD (491-492, 494-

496)

O3, PM10 >64

New Haven, CT Schwartz (1995) all respiratory (460-519) O3, PM10 >64

Tacoma, WA Schwartz (1995) all respiratory (460-519) O3, PM10 >64

*Birmingham, Alabama; Boulder, Colorado; Canton, Ohio; Chicago, Illinois; Colorado Springs, Colorado; Detroit, Michigan;
Minneapolis/St. Paul, Minnesota; Nashville, Tennessee; New Haven, Connecticut; Pittsburgh, Pennsylvania; Provo/Orem, Utah;
Seattle, Washington; Spokane, Washington; and Youngstown, Ohio.

Exhibit 4-9  Cardiovascular Hospital Admission Studies

Location Study Endpoints Estimated
(ICD code)

Pollutants Used
in Final Model

Age of Study
Population

PM-Related Hospital Admissions

Fourteen U.S.
Cities*

Samet et al. (2000a) cardiovascular illness (390 - 429) PM10 >64

Ozone-Related Hospital Admissions

Toronto, Canada Burnett et al. (1999) dysrhythmias (427); PM2.5, O3 all ages
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4.3.1 PM-Related Respiratory and Cardiovascular Hospital Admissions

Respiratory and cardiovascular hospital admissions are the two broad categories of hospital
admissions that have been related to exposure to both PM and ozone.  Several epidemiological studies have
estimated C-R functions that included both PM and ozone.  However, a recent study by the Health Effects
Institute (HEI) (Samet et al., 2000a) estimated separate models for PM10 and pneumonia, COPD and
cardiovascular diseases in each of fourteen cities in the United States, as well as pooled estimates across
these cities.  The fourteen cities included in the HEI hospital admissions study are Birmingham, Alabama;
Boulder, Colorado; Canton, Ohio; Chicago, Illinois; Colorado Springs, Colorado; Detroit, Michigan;
Minneapolis/St. Paul, Minnesota; Nashville, Tennessee; New Haven, Connecticut; Pittsburgh,
Pennsylvania; Provo/Orem, Utah; Seattle, Washington; Spokane, Washington; and Youngstown, Ohio.  

We believe the Samet et al. (2000a) pooled estimates are preferable to previously estimated models
for several reasons.  First, the HEI models are distributed lag models that are designed to capture not only
same-day effects of PM but the effects of PM on a series of days subsequent to exposure.  This type of
model therefore captures the full impact of PM on hospital admissions.  Samet et al. (2000a) note that
because of serial correlation, the coefficients of the PM lags tend to be unstable (i.e., have large variances)
in single-city models; however, the pooled estimates, based on all fourteen cities are more stable because
they are based on much larger sample sizes.  A second advantage of the HEI models is that they represent
the PM effect across a range of cities in the United States.  Although other studies have estimated C-R
functions in various cities in the United States, many of these cities (e.g., Minneapolis/St. Paul,
Birmingham, Detroit, Spokane, New Haven, and Seattle) are included in the HEI study, which is a more
recent analysis of the PM-hospital admissions relationships in these cities.        

Although the HEI models do not include other pollutants, they do investigate the impact of omitting
other pollutants on the estimated PM effects on hospital admissions.  The results of this investigation are
shown graphically in Figures 33 and 34 of  Samet et al. (2000a).  The study authors conclude that the
omission of SO2 and O3 from the models had virtually no effect on the estimated PM effect in any of the
three pooled estimates (for cardiovascular diseases, COPD, and pneumonia).  While Figure 34 suggests
that this is the case for CV diseases and pneumonia, the omission of ozone from the model appears to have
resulted in a downward-biased estimate of the PM effect on hospital admissions for COPD.  This suggests
that using the HEI pooled estimate for COPD will tend to understate the PM effect.   

The HEI study estimates separate C-R functions for pneumonia and COPD hospital admissions for
people 65 years and older.  In addition, another study by Sheppard et al. (1999) estimates a C-R function
for asthma hospital admissions for people under 65.  The results of these three non-overlapping PM-related
respiratory C-R functions are aggregated using the relevant steps of a pooling procedure described below. 

Alternative Calculation: Moolgavkar et al. (1997) Pneumonia and COPD

Because the Samet et al. (2000a) study is the only one used to predict PM-related pneumonia- and
COPD-related hospital admissions in the primary analysis, we present cases of pneumonia and COPD
estimated by Moolgavkar et al. (1997) here as alternative calculations.  In previous analyses, the study by
Moolgavkar et al. was one of a number of studies pooled together to estimate PM-related respiratory
hospital admission incidence.  We still use the Moolgavkar et al. study in the primary ozone analysis.
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4.3.2 Ozone-Related Respiratory and Cardiovascular Hospital Admissions

We estimate the impact of ozone on cardiovascular and respiratory hospital admissions.  The
evidence seems strongest for the link between ozone and respiratory admissions.  However, as we discuss
below, some evidence suggests a link between ozone and dysrhythmias admissions.

Cardiovascular Hospital Admissions

Several studies have investigated the relationship between ozone and hospital admissions for
cardiovascular illnesses (Schwartz and Morris, 1995; Burnett et al., 1997; Schwartz, 1997; Burnett et al.,
1999; Schwartz, 1999).  However, the range of ICD codes included in these studies has varied
substantially.  Burnett (1997) included ICD codes 410-414 and 427-428, and reported an ozone coefficient
that was one or more orders of magnitude greater than any of the other reported ozone coefficients.  At the
other extreme, three of the studies failed to find any ozone effect and did not include ozone in their final
models  (Schwartz and Morris, 1995; Schwartz, 1997; Schwartz, 1999).  Two of these studies, Schwartz
(1997; 1999), included a broad range of ICD codes, 390 - 429.  The third included 410-414 (ischemic heart
disease) and 428 (congestive heart failure).  A fifth study, Burnett et al. (1999), included only ICD code
427 (dysrhythmias) and found a modest (statistically insignificant) ozone effect.

Because the result reported by Burnett et al. (1997) is so large, we believe it may be spurious and
therefore did not use it.  On the other hand, the lack of an ozone effect in the Schwartz studies may be the
result of including too large a group of illnesses.  If only one illness (e.g., dysrhythmias) is actually related
to ozone, the inclusion of so many additional illnesses in the study may have simply added too much noise
to detect anything.  It is possible that there is a real relationship between ozone and ICD code 427, the only
ICD code that was included in both studies reporting positive results.  We therefore chose only the study by
Burnett et al. (1999), which reported a relationship between ozone and  ICD code 427 (dysrhythmias).

Respiratory Hospital Admissions

To estimate the incidence and monetary value of avoided ozone-related respiratory hospital
admissions, we pool the incidences and the monetary values corresponding to the incidence estimates from
a variety of U.S. and Canadian studies, using a random effects weighting procedure.  These studies differ
from each other in two important ways: (1) Some studies considered people of all ages while others
considered only people ages 65 and older; and (2) The ICD codes included in the studies vary substantially. 

The broadest classification includes ICD codes 460-519 (e.g., Schwartz 1995).  Other studies,
however, considered only subsets of the broader classification.  For example, Schwartz (1994b) considered
ICD-9 codes 480-486, 491-492, and 494-496.  It is unclear what the correct set of ICD codes is.  If the
broadest category (460-519) is too broad, including respiratory illnesses that are not linked to air pollution, 
we would expect the estimated pollutant coefficients to be biased downward; however, they would be used
in combination with a larger baseline incidence in estimating changes in respiratory hospital admissions
associated with changes in pollutant concentrations.  If the broadest category is correct (i.e., if all the
respiratory illnesses included are actually associated with air pollution), then studies using only subsets of
ICD codes within that category would presumably understate the change in respiratory hospital admissions. 
It is likely, however, that all the studies have included the most important respiratory illnesses, and that the
impact of differences in the definition of “all respiratory illnesses” may be less than that of other study



29 “Pollutant” can mean either PM or ozone.
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design characteristics.  We therefore treat each study equally, at least initially, in the pooling process,
assuming that each study gives a reasonable estimate of the impact of air pollution on respiratory hospital
admissions.  The pooling process involves several steps, as described below.

4.3.3 Pooling the Results of More Than One Study 

For ozone-related respiratory hospital admissions there is more than one relevant C-R function,
some of which overlap with each other while others do not.  The results of the overlapping functions should
be pooled; the results of the non-overlapping functions should be aggregated.  The procedure we used to
pool and aggregate the information in these functions is described below.

1.  For each study, develop a study-specific distribution of pollutant29 coefficients.  If separate non-
overlapping sets of illnesses were considered in the study, develop a distribution for each set.   

The value of the pollutant coefficient in a C-R function is estimated.  Because of the statistical
uncertainty surrounding the estimated coefficient, the C-R function is uncertain.  We assume a normal
distribution of the pollutant coefficient in the C-R function, with mean equal to the estimated coefficient
reported in the study and standard deviation equal to the reported standard error of that estimate.  If
separate models were estimated for separate non-overlapping sets of illnesses (e.g., Moolgavkar et al.
1997) estimated separate models for pneumonia (ICD codes 480-487) and one for COPD (ICD codes 490-
496), we develop a  distribution of coefficients for each non-overlapping hospital admissions category. 

2.  For each study, develop a distribution of unit monetary values.  If separate non-overlapping sets of
respiratory illnesses were considered in the study, develop a distribution of unit monetary values for each
set.  

The monetary value of an avoided hospital admission depends on the particular type of illness (i.e.,
the ICD code) and the length of stay in the hospital, which itself varies with the type of admission.  The
monetary value of a set of hospital admissions (i.e., a set of ICD codes) is estimated as a weighted average
of the individual ICD-code-specific values in the set.   The valuation of hospital admissions is described
more fully below.

3.  For each study, develop a distribution of incidence changes and a distribution of monetary benefits
resulting from a given change in pollutant concentrations.  

On each iteration of a Monte Carlo procedure, for each non-overlapping hospital admissions
category considered in the study, 

•  we randomly select a pollutant coefficient from the distribution of coefficients.
• Given the coefficient and the pollutant change, we calculate the incidence change. 
• We randomly select a unit dollar value from the corresponding dollar distribution;
• The benefit is the product of the incidence change and the unit dollar value.

If the study has considered several non-overlapping hospital admissions categories, we sum the
incidences and the dollar benefits across categories.  For example, we estimated and summed the incidences



30 Some people take action to avert the negative impacts of pollution.  While the costs of successful averting behavior should
be added to the sum of the health-endpoint-specific costs when estimating the total costs of pollution, these costs are not associated
with any single health endpoint   It is possible that in some cases the averting action was not successful, in which case it might be
argued that the cost of the averting behavior should be added to the other costs listed (for example, it might be the case that an
individual incurs the costs of averting behavior and in addition incurs the costs of the illness that the averting behavior was intended to
avoid).  Because averting behavior is generally not taken to avoid a particular health problem  (such as a hospital admission for
respiratory illness), but instead is taken to avoid the entire collection of adverse effects of pollution, it does not seem reasonable to
ascribe the entire costs of averting behavior to any single health endpoint.  However, omission of these averting behavior costs will
tend to bias the estimates downward.     
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for the two separate models estimated by Moolgavkar et al. (1997).   A series of many (e.g., 5000)
iterations therefore produces (1) a series (distribution) of incidence changes for each non-overlapping
hospital admissions category considered by the study as well as for all categories combined, and (2) a
distribution of the dollar benefits associated with hospital admissions that would be predicted by the study.  

4.  For ozone-related respiratory hospital admissions:  Pool estimates of respiratory hospital admissions
changes.
 

The study-specific incidence estimates are then pooled using a random effects pooling procedure,
as described above.  The study-specific dollar benefits estimates are similarly pooled. 

4.3.4 Valuing Respiratory and Cardiovascular Hospital Admissions

Society’s WTP to avoid a hospital admission includes medical expenses, lost work productivity,
the non-market costs of treating illness (i.e., air, water and solid waste pollution from hospitals and the
pharmaceutical industry), and the pain and suffering of the affected individual as well as of that of
relatives, friends, and associated caregivers.30

Because medical expenditures are to a significant extent shared by society, via medical insurance,
Medicare, etc., the medical expenditures actually incurred by the individual are likely to be less than the
total medical cost to society.  The total value to society of an individual’s avoidance of hospital admission,
then, might be thought of as having two components:  (1) the cost of illness (COI) to society, including the
total medical costs plus the value of the lost productivity, as well as (2) the WTP of the individual, as well
as that of others, to avoid the pain and suffering resulting from the illness.

In the absence of estimates of social WTP to avoid hospital admissions for specific illnesses
(components 1 plus 2 above), estimates of total COI (component 1) are typically used as conservative
(lower bound) estimates.  Because these estimates do not include the value of avoiding the pain and
suffering resulting from the illness (component 2), they are biased downward.  Some analyses adjust COI
estimates upward by multiplying by an estimate of the ratio of WTP to COI, to better approximate total
WTP.  Other analyses have avoided making this adjustment because of the possibility of over-adjusting --
that is, possibly replacing a known downward bias with an upward bias.  The previous RIAs for PM and
ozone, as well as the revised RIA for ozone and PM NAAQS, did adjust the COI estimate upward.  Based
on SAB advice, the COI values used in this benefits analysis will not be adjusted to better reflect the total
WTP.

Following the method used in the §812 analysis (U.S. EPA, 1999b), ICD-code-specific COI
estimates used in our analysis consist of two components: estimated hospital charges and the estimated
opportunity cost of time spent in the hospital (based on the average length of a hospital stay for the illness). 
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The opportunity cost of a day spent in the hospital is estimated as the value of the lost daily wage,
regardless of whether or not the individual is in the workforce.  

For all hospital admissions included in this analysis, estimates of hospital charges and lengths of
hospital stays were based on discharge statistics provided by the Agency for Healthcare Research and
Quality’s Healthcare Utilization Project (2000).  The total COI for an ICD-code-specific hospital stay
lasting n days, then, would be estimated as the mean hospital charge plus $106*n.  Most respiratory
hospital admissions categories considered in epidemiological studies consisted of sets of ICD codes.  The
unit dollar value for the set of ICD codes was estimated as the weighted average of the ICD-code-specific
mean hospital charges of each ICD code in the set.  The weights were the relative frequencies of the ICD
codes among hospital discharges in the United States, as estimated by the National Hospital Discharge
Survey (Owings and Lawrence, 1999, Table 1).  The study-specific values for valuing respiratory and
cardiovascular hospital admissions are shown in Exhibits 4-10 and 4-11, respectively.

The mean hospital charges and mean lengths of stay provided by (AHRQ 2000) are based on a
very large nationally representative sample of about seven million hospital discharges, and are therefore the
best estimates of mean hospital charges and mean lengths of stay available, with negligible standard errors. 
However, because of distortions in the market for medical services, the hospital charge may exceed “the
cost of a hospital stay.”  We use the example of a hospital visit to illustrate the problem.  Suppose a patient
is admitted to the hospital to be treated for an asthma episode.  The patient’s stay in the hospital (including
the treatments received) costs the hospital a certain amount.  This is the hospital cost – i.e., the short-term
expenditures of the hospital to provide the medical services that were provided to the patient during his
hospital stay.  The hospital then charges the payer a certain amount – the hospital charge.  If the hospital
wants to make a profit,  is trying to cover costs that are not associated with any one particular patient
admission (e.g., uninsured patient services), and/or has capital expenses (building expansion or renovation)
or other long term costs, it may charge an amount that exceeds the patient-specific short term costs of
providing services.  The payer (e.g., the health maintenance organization or other health insurer) pays the
hospital a certain amount – the payment – for the services provided to the patient.  The less incentive the
payer has to keep costs down, the closer the payment will be to the charge.  If, however, the payer has an
incentive to keep costs down, the payment may be substantially less than the charge; it may still, however,
exceed the short-term cost for services to the individual patient.

Although the hospital charge may exceed the short-term cost to the hospital of providing the
medical services required during a patient’s hospital stay, cost of illness estimates based on hospital
charges are still likely to understate the total social WTP to avoid the hospitalization in the first place,
because the omitted WTP to avoid the pain and suffering is likely to be quite large.    
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Exhibit 4-10  Unit Values for Respiratory Hospital Admissions*

Location Study Endpoints Estimated
(ICD code)

Age of Study
Population

COI a

(1999 $)

PM-Related Hospital Admissions

Fourteen U.S.
Cities

Samet et al. (2000a) pneumonia (480-487) >64 $14,693

COPD  (490-492, 494-6) $12,378

Seattle, WA Sheppard et al. (1999) asthma (493) <65 $6,633

Minneapolis-St.
Paul, MN

Moolgavkar et al.
(1997)

pneumonia (480-487)
>64

$14,693

COPD  (490-496) $12,149

Ozone-Related Hospital Admissions

Toronto, Canada Burnett et al. (1997) all respiratory (464-466, 480-
486, 490-494, 496)

all ages $11,175

Toronto, Canada Burnett et al. (1999) asthma (493)

all ages

$7,218

respiratory infection (464,
466, 480-487, 494)

$12,087

COPD (490-492, 496) $12,159

Toronto, Canada Thurston et al. (1994) all respiratory (466, 480-482,
485, 490-493)

all ages $11,046

Minneapolis-St.
Paul, MN

Moolgavkar et al.
(1997)

pneumonia (480-487)
>64

$14,693

COPD  (490-496) $12,149

Minneapolis-St. 
Paul, MN

Schwartz (1994a) pneumonia (480-486) >64 $14,768

Detroit, MI Schwartz (1994b)  pneumonia (480-486)
>64

$14,768

 non-asthma COPD (491-492,
494-496)

$12,464

New Haven, CT Schwartz (1995) all respiratory (460-519) >64 $15,631

Tacoma, WA Schwartz (1995) all respiratory (460-519) >64 $15,631
* The unit value for a group of ICD-9 codes is the weighted average of ICD-9 code-specific values, from AHRQ (2000).  The weights
are the relative frequencies of hospital discharges for each ICD-9 code in the group (Owings and Lawrence, 1999, Table 1).   The
monetized benefits of non-overlapping endpoints within each study were aggregated.  Monetized benefits for asthma among people
age <65 (Sheppard et al., 1999) were aggregated with the monetized benefits in Samet et al. (2000a) of people age >64.
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Exhibit 4-11  Unit Values for Cardiovascular Hospital Admissions*

Location Study Endpoints Estimated
(ICD code)

Age of Study
Population

COI a

(1999 $)

PM-Related Hospital Admissions

Fourteen U.S.
Cities

Samet et al. (2000a) cardiovascular illness (390 - 429) >64 $18,387

Ozone-Related Hospital Admissions

Toronto, Canada Burnett et al. (1999) dysrhythmias (427); all ages $12,441
* The unit value for a group of ICD-9 codes is the weighted average of ICD-9 code-specific values, from AHRQ (2000).  The weights
are the relative frequencies of hospital discharges for each ICD-9 code in the group (Owings and Lawrence, 1999, Table 1).

We were not able to estimate the uncertainty surrounding cost-of-illness estimates for hospital
admissions because 1993 was the last year for which standard errors of estimates of mean hospital charges
were reported .  However, the standard errors reported in 1993 were very small because estimates of mean
hospital charges were based on large sample sizes, and the overall sample size in 1997 was about ten times
as large as that in 1993 (at about seven million hospital discharges in all).  The standard errors of the
current estimates of mean hospital charges will therefore be negligible.   Therefore, although we cannot
include the uncertainty surrounding these cost-of-illness estimates in our overall uncertainty analysis, the
omission of this component of uncertainty will have virtually no impact on the overall characterization of
uncertainty.

Alternative Calculation: Valuing Moolgavkar et al. (1997) Pneumonia and COPD

The value of PM-related pneumonia and COPD cases estimated by Moolgavkar et al. (1997)are
the same as those used to value ozone-related cases of pneumonia and COPD.

4.3.5 Asthma-Related Emergency Room (ER) Visits

We use the four C-R functions in Exhibit 4-12 to estimate the effects of exposure to PM and ozone
on asthma-related ER visits.  For ozone-related asthma ER visits, we use three epidemiological studies:
Cody et al. (1992), Weisel et al. (1995), and Stieb et al. (1996).  Working in central New Jersey, Cody et
al. examined asthma-related ER visits over a 16 month period between May, 1988 and August, 1989, and
found that ozone was linked to asthma-related ER visits. No significant effect was seen for PM10 or SO2. 
Using a one-pollutant model, Weisel et al. also found ozone linked to asthma-related ER visits in an all-age
1990 population for eight New Jersey counties.  Stieb et al. (1996) examined the relationship between ER
visits and air pollution for persons of all ages in St. John, New Brunswick, Canada, from May through
September in 1984-1992.  Ozone was significantly linked to ER visits, especially when ozone levels
exceeded 75 ppb.  Schwartz et al. (1993) failed to find a significant relationship between asthma-related
ER visits and ozone.  In this study of older Seattle residents, Schwartz et al. instead found PM10 to be
significantly related to asthma-related ER visits.
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Exhibit 4-12  Asthma-Related Emergency Room Visit Studies

Location Study Pollutants Used in Final Model Study Population

central and northern NJ Cody et al. (1992) O3 all ages

central and northern NJ Weisel et al. (1995) O3 all ages

New Brunswick, Canada Stieb et al. (1996) O3 all ages

Seattle, WA Schwartz et al. (1993) PM10 <65

Because we are estimating ER visits as well as hospital admissions for asthma, we must avoid
counting twice the ER visits for asthma that are subsequently admitted to the hospital.  To avoid double-
counting, the baseline incidence rate for emergency room visits is adjusted by subtracting the percentage of
patients who are admitted into the hospital.  Three studies provide some information on which to base this
adjustment: Richards et al. (1981, p. 350) reported that 13% of children's ER visits ended up as hospital
admissions; Lipfert (1993, p. 230) reported that ER visits (for all causes) are two to five times more
frequent than hospital admissions; Smith et al. (1997, p. 789) reported 445,000 asthma-related hospital
admissions in 1987 and 1.2 million asthma ER visits.  The study by Smith et al. seems the most relevant
since it is a national study and looks at all age groups.  

Assuming that air-pollution related hospital admissions first pass through the ER, the reported
incidence rates suggest that 37% (=445,000/1,200,000) of ER visits are subsequently admitted to the
hospital, or that ER visits for asthma occur 2.7 times as frequently as hospital admissions for asthma.  The
baseline incidence of asthma ER visits is therefore taken to be 2.7 times the baseline incidence of hospital
admissions for asthma.  To avoid double-counting, however, only 63% of the resulting change in asthma
ER visits associated with a given change in pollutant concentrations is counted in the ER visit incidence
change. 

Valuing Asthma-Related Emergency Room (ER) Visits

The value of an avoided asthma-related ER visit was based on national data reported in Smith et
al. (1997).  Smith et al. reported that there were approximately 1.2 million asthma-related ER visits made
in 1987, at a total cost of $186.5 million, in 1987$.  The average cost per visit was therefore $155 in
1987$, or $298.62 in 1999 $ (using the CPI-U for medical care to adjust to 1999 $).  The uncertainty
surrounding this estimate, based on the uncertainty surrounding the number of ER visits and the total cost
of all visits reported by Smith et al. was characterized by a triangular distribution centered at $299, on the
interval [$221.65, $414.07].

4.4 Acute Illnesses and Symptoms Not Requiring Hospitalization

We consider in this section a number of acute symptoms that do not require hospitalization, such
as acute bronchitis, and upper and lower respiratory symptoms.  Several of these illnesses and symptoms
were considered in the §812 Prospective analysis as well.  The unit values and the uncertainty distributions
for those acute illnesses and symptoms that were also considered in the §812 Prospective analysis were
obtained by adjusting the unit values used in that analysis from 1990 $ to 1999 $ by multiplying by 1.275
(based on the CPI-U for “all items”). 
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Exhibit 4-13  Studies of Symptoms/Illnesses Not Requiring Hospitalization

Endpoint a Study Pollutants Study Population

Acute bronchitis Dockery et al. (1996) PM2.5 Ages 8-12

Upper respiratory symptoms
(URS)

Pope et al. (1991) PM10 Asthmatics, ages 9-11

Lower respiratory symptoms
(LRS)

Schwartz et al. (1994) PM2.5 Ages 7-14

Minor restricted activity day
(MRAD)

Ostro and Rothschild (1989), PM2.5 (estimated), O3 Ages 18-65

Asthma Attacks b Whittemore and Korn (1980)  PM10, O3 asthmatics, all ages

Work loss days (WLDs) Ostro (1987) PM2.5 Ages 18-65

Worker productivity Crocker and Horst (1981) and
EPA (1994) O3 Working population

Any of 19 respiratory symptoms Krupnick et al. (1990) PM10, O3 Ages 18-65

Moderate or worse asthma
status

Ostro et al. (1991), PM2.5 asthmatics, all ages

Shortness of breath (days with) Ostro et al. (1995) PM10 African-American
asthmatics,  ages 7-12

a Italicized entries are either alternative or supplemental calculations to the endpoints and/or studies used in the primary analysis.

b Note that we present the number of avoided asthma attacks in the primary analysis.  However, we present the value of these
avoided asthma attacks as an alternative calculation.

4.4.1 Acute Bronchitis

Dockery et al. (1996) examined the relationship between PM and other pollutants on the reported
rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 children ages 8-12
living in  24 communities in the U.S. and Canada.  Health data were collected in 1988-1991, and single-
pollutant models were used in the analysis to test a number of measures of particulate air pollution. 
Dockery et al. found that annual level of sulfates and particle acidity were significantly related  to
bronchitis, and PM2.5 and PM10 were marginally significantly related to bronchitis.

Valuing Acute Bronchitis

Estimating WTP to avoid a case of acute bronchitis is difficult for several reasons.  First, WTP to
avoid acute bronchitis itself has not been estimated.  Estimation of WTP to avoid this health endpoint
therefore must be based on estimates of WTP to avoid symptoms that occur with this illness.  Second, a
case of acute bronchitis may last more than one day, whereas it is a day of avoided symptoms that is
typically valued.  Finally, the C-R function used in the benefit analysis for acute bronchitis was estimated
for children, whereas WTP estimates for those symptoms associated with acute bronchitis were obtained
from adults.



31 With empirical evidence, we could presumably improve the accuracy of the probabilities of occurrence of each type of
URS.  Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default” assumption.
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With these caveats in mind, the values used for acute bronchitis in this analysis were obtained by
adjusting the values used in the §812 Prospective analysis from 1990 $ to 1999 $ by multiplying by 1.275.
WTP to avoid a case of acute bronchitis was estimated as the midpoint between a low estimate and a high
estimate.  The low estimate is the sum of the midrange values recommended by IEc (1994) for two
symptoms believed to be associated with acute bronchitis: coughing and chest tightness.  The high estimate
was taken to be twice the value of a minor respiratory restricted activity day.  The unit value is the
midpoint between the low and high estimates.  The low, high, and midpoint estimates used in the §812
Prospective analysis were $13, $77, and $45, respectively, in 1990 $.  The corresponding values in 1999 $
are $16.58, $98.18, and $57.38, respectively.

4.4.2 Upper Respiratory Symptoms (URS)

Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a
variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah
Valley from December 1989 through March 1990.  The children in the Pope et al. study were asked to
record respiratory symptoms in a daily diary, and the daily occurrences of URS and LRS, as defined above,
were related to daily PM10 concentrations.  Pope et al. describe URS as consisting of one or more of the
following symptoms:  runny or stuffy nose; wet cough; and burning, aching, or red eyes.   Levels of ozone,
NO2, and SO2 were reported low during this period, and were not included in the analysis.

The sample in this study is relatively small and is most representative of the asthmatic population,
rather than the general population.  The school-based subjects (ranging in age from 9 to 11) were chosen
based on “a positive response to one or more of three questions: ever wheezed without a cold, wheezed for
3 days or more out of the week for a month or longer, and/or had a doctor say the ‘child has asthma’ (Pope
et al., 1991, p. 669).”  The patient-based subjects (ranging in age from 8 to 72) were receiving treatment
for asthma and were referred by local physicians.  Regression results for the school-based sample (Pope et
al., 1991, Table 5) show PM10 significantly associated with both upper and lower respiratory symptoms. 
The patient-based sample did not find a significant PM10 effect.  The results from the school-based sample
are used here.

Valuing URS

Willingness to pay to avoid a day of URS is based on symptom-specific WTPs to avoid those
symptoms identified by Pope et al. as part of the URS complex of symptoms. Three contingent valuation
(CV) studies have estimated WTP to avoid various morbidity symptoms that are either within the URS
symptom complex defined by Pope et al. (1991) or are similar to those symptoms identified by Pope et al. 
In each CV study, participants were asked their WTP to avoid a day of each of several symptoms.  The
WTP estimates corresponding to the morbidity symptoms valued in each study are presented in Exhibit 4-
14.  The three individual symptoms listed in Exhibit 4-14 that were identified as most closely matching
those listed by Pope, et al. for URS are cough, head/sinus congestion, and eye irritation, corresponding to
“wet cough,” “runny or stuffy nose,” and “burning, aching or red eyes,” respectively.  A day of URS could
consist of any one of the seven possible “symptom complexes” consisting of at least one of these three
symptoms.  These seven possible symptom complexes are presented in Exhibit 4-15.  It is assumed that
each of these seven URS complexes is equally likely.31  The point estimate of MWTP to avoid an
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occurrence of URS is just an average of the seven estimates of MWTP for the different URS complexes. 
In the absence of information surrounding the frequency with which each of the seven types of URS occurs
within the URS symptom complex, an uncertainty analysis for WTP to avoid a day of URS is based on a
continuous uniform distribution of MWTPs in Exhibit 4-15.

Exhibit 4-14  Median WTP Estimates and Derived Midrange Estimates (in 1999 $)

Symptom a Dickie et al. (1987) Tolley et al. (1986) Loehman et al. (1979) Mid-Range Estimate

Throat congestion 4.81 20.84 - 12.75

Head/sinus congestion 5.61 22.45 10.45 12.75

Coughing 1.61 17.65 6.35 8.93

Eye irritation - 20.03 - 20.03

Headache 1.61 32.07 - 12.75

Shortness of breath 0.00 - 13.47 6.37

Pain upon deep inhalation (PDI) 5.63 - - 5.63

Wheeze 3.21 - - 3.21

Coughing up phlegm 3.51 b - - 3.51

Chest tightness 8.03 - - 8.03

a All estimates are WTP to avoid one day of symptom.  Midrange estimates were derived by IEc (1993).

b 10% trimmed mean.

 

Exhibit 4-15  Estimates of MWTP to Avoid Upper Respiratory Symptoms (1999 $)

Symptom Combinations Identified as URS by Pope et al. (1991) MWTP to Avoid
Symptom(s)

Coughing $8.93

Head/Sinus Congestion $12.75

Eye Irritation $20.03

Coughing, Head/Sinus Congestion $21.67

Coughing, Eye Irritation $28.96

Head/Sinus Congestion, Eye Irritation $32.78

Coughing, Head/Sinus Congestion, Eye Irritation $41.71

Average: $23.83

Based on values reported in Exhibit 4-14.



32 Because cough is a symptom in some of the URS clusters as well as some of the LRS clusters, there is the possibility of a
very small amount of double counting – if the same individual were to have an occurrence of URS which included cough and an
occurrence of LRS which included cough both on exactly the same day.  Because this is probably a very small probability occurrence,
the degree of double counting is likely to be very minor.  Moreover, because URS is applied only to asthmatics ages 9-11 (a very small
population), the amount of potential double counting should be truly negligible.
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It is worth emphasizing that what is being valued here is URS as defined by Pope et al. (1991). 
While other definitions of URS are certainly possible, this definition of URS is used in this benefit analysis
because it is the incidence of this specific definition of URS that has been related to PM exposure by Pope
et al.

4.4.3 Lower Respiratory Symptoms (LRS)

Schwartz et al. (1994)  used logistic regression to link lower respiratory symptoms in children with
SO2, NO2, ozone, PM10, PM2.5, sulfate and H+ (hydrogen ion).  Children were selected for the study if they
were exposed to indoor sources of air pollution: gas stoves and parental smoking.  The study enrolled 1,844
children into a year-long study that was conducted in different years (1984 to 1988) in six cities.  The
students were in grades two through five at the time of enrollment in 1984.  By the completion of the final
study, the cohort would then be in the eighth grade (ages 13-14); this suggests an age range of 7 to 14.

In single pollutant models SO2, NO2, PM2.5, and PM10 were significantly linked to cough.  In two-
pollutant models, PM10 had the most consistent relationship with cough; ozone was marginally significant,
controlling for PM10.  In models for upper respiratory symptoms, they reported a marginally significant
association for PM10.  In models for lower respiratory symptoms, they reported significant single-pollutant
models, using SO2, O3, PM2.5, PM10, SO4, and H+.

Valuing LRS

The method for deriving a point estimate of mean WTP to avoid a day of LRS is the same as for
URS.  Schwartz et al. (1994, p. 1235) define LRS as at least two of the following symptoms: cough, chest
pain, phlegm, and wheeze.  The symptoms for which WTP estimates are available that reasonably match
those listed by Schwartz et al. for LRS are cough (C), chest tightness (CT), coughing up phlegm (CP), and
wheeze (W).   A day of LRS, as defined by Schwartz et al., could consist of any one of the 11
combinations of at least two of these four symptoms, as displayed in Exhibit 4-16.32



33 As with URS, if we had empirical evidence we could improve the accuracy of the probabilities of occurrence of each type
of LRS.  Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default” assumption.
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Exhibit 4-16  Estimates of MWTP to Avoid Lower Respiratory Symptoms (1999 $)

Symptom Combinations Identified as LRS by Schwartz et al. (1994) MWTP to Avoid
Symptom(s)

Coughing, Chest Tightness $16.95

Coughing, Coughing Up Phlegm $12.42

Coughing, Wheeze $12.13

Chest Tightness, Coughing Up Phlegm $11.53

Chest Tightness, Wheeze $11.24

Coughing Up Phlegm, Wheeze $6.72

Coughing, Chest Tightness, Coughing Up Phlegm $20.46

Coughing, Chest Tightness, Wheeze $20.17

Coughing, Coughing Up Phlegm, Wheeze $15.64

Chest Tightness, Coughing Up Phlegm, Wheeze $14.75

Coughing, Chest Tightness, Coughing Up Phlegm, Wheeze $23.67

Average: $15.06

Based on values reported in Exhibit 4-14.

We assumed that each of the eleven types of LRS is equally likely.33  The mean WTP to avoid a
day of LRS as defined by Schwartz et al. (1994) is therefore the average of the mean WTPs to avoid each
type of LRS.  This is the point estimate used in the benefit analysis for the dollar value for LRS as defined
by Schwartz et al.   The WTP estimates are based on studies which considered the value of a day of
avoided symptoms, whereas the Schwartz et al. study used as its measure a case of LRS.  Because a case
of LRS usually lasts at least one day, and often more, WTP to avoid a day of LRS should be a
conservative estimate of WTP to avoid a case of LRS.

In the absence of information about the frequency of each of the eleven types of LRS among all
occurrences of LRS, the uncertainty analysis for WTP to avoid a day of URS is based on a continuous
uniform distribution of MWTPs in Exhibit 4-16.  This is the same procedure as that used in the URS
uncertainty analysis.

As with URS, it is worth emphasizing that what is being valued here is LRS as defined by
Schwartz et al. (1994).  While other definitions of LRS are certainly possible, this definition of LRS is
used in this benefit analysis because it is the incidence of this specific definition of LRS that has been
related to PM exposure by Schwartz et al.
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Issues in the Valuation of URS and LRS

The point estimates derived for mean WTP to avoid a day of URS and a case of LRS are based on
the assumption that WTPs are additive.  For example, if WTP to avoid a day of cough is $8.93, and WTP
to avoid a day of shortness of breath is $6.37, then WTP to avoid a day of both cough and shortness of
breath is $15.30.  If there are no synergistic effects among symptoms, then it is likely that the marginal
utility of avoiding symptoms decreases with the number of symptoms being avoided.  If this is the case,
adding WTPs would tend to overestimate WTP for avoidance of multiple symptoms.  However, there may
be synergistic effects– that is, the discomfort from two or more simultaneous symptoms may exceed the
sum of the discomforts associated with each of the individual symptoms.  If this is the case, adding WTPs
would tend to underestimate WTP for avoidance of multiple symptoms.   It is also possible that people may
experience additional symptoms for which WTPs are not available, again leading to an underestimate of the
correct WTP.  However, for small numbers of symptoms, the assumption of additivity of WTPs is unlikely
to result in substantive bias.

There are also three sources of uncertainty in the valuation of both URS and LRS: (1) an
occurrence of URS or of LRS may be comprised of one or more of a variety of symptoms (i.e., URS and
LRS are each potentially a “complex of symptoms”), so that what is being valued may vary from one
occurrence to another; (2) for a given symptom, there is uncertainty about the mean WTP to avoid the
symptom; and (3) the WTP to avoid an occurrence of multiple symptoms may be greater or less than the
sum of the WTPs to avoid the individual symptoms. 

Information about the degree of uncertainty from either the second or the third source is not
available.  The first source of uncertainty, however, is addressed because an occurrence of URS or LRS
may vary in symptoms.  For example, seven different symptom complexes that qualify as URS, as defined
by Pope et al. (1991), were identified above.  The estimates of MWTP to avoid these seven different kinds
of URS range from $8.93 (to avoid an occurrence of URS that consists of only coughing) to $41.71 (to
avoid an occurrence of URS that consists of coughing plus head/sinus congestion plus eye irritation). 
There is no information, however, about the frequency of each of the seven types of URS among all
occurrences of URS.

Because of insufficient information to adequately estimate the distributions of the estimators of
MWTP for URS and LRS, as a rough approximation, a continuous uniform distribution over the interval
from the smallest point estimate to the largest is used, as noted above. 

Alternatively, a discrete distribution of the seven unit dollar values associated with each of the
seven types of URS identified could be used.  This would provide a distribution whose mean is the same as
the point estimate of MWTP.  A continuous uniform distribution, however, is probably more reasonable
than a discrete uniform distribution.  The differences between the means of the discrete uniform
distributions (the point estimates) and the means of the continuous uniform distributions are relatively
small, as shown in Exhibit 4-17.
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Exhibit 4-17  Comparison of the Means of Discrete and Continuous Uniform Distributions of MWTP
Associated with URS and LRS (1990 $)

Health Endpoint Mean of Discrete Uniform
Distribution (Point Est.)

Mean of Continuous Uniform
Distribution

URS (Pope et al., 1991) 18.70 19.86

LRS (Schwartz et al., 1994) 11.82 11.92

4.4.4 Minor Restricted Activity Days (MRADs) Adjusted for Asthma Attacks

Ostro and Rothschild (1989) estimated the impact of PM2.5 on the incidence of minor restricted
activity days (MRAD) in a national sample of the adult working population, ages 18 to 65, living in
metropolitan areas.  We developed separate coefficients for each year in the analysis (1976-1981), which
were then combined for use in this analysis.  The coefficient used in the C-R function is a weighted average
of the coefficients in Ostro and Rothschild (1989), Table 4, using the inverse of the variance as the weight.
To avoid double counting, the number of asthma attacks estimated by the Whittemore and Korn-based
(1980) C-R functions were subtracted from the number of MRADs estimated by Ostro and Rothschild.

Valuing Minor Restricted Activity Days (MRADs)

The unit value and uncertainty distribution for MRADs for this analysis were obtained by
adjusting the (rounded) values in 1990 $ used in the §812 Prospective analysis to 1999 $ by multiplying by
1.275.  No studies are reported to have estimated WTP to avoid a minor restricted activity day (MRAD).
However, IEc (1993) has derived an estimate of WTP to avoid a minor respiratory restricted activity day
(MRRAD), using WTP estimates from Tolley et al. (1986) for avoiding a three-symptom combination of
coughing, throat congestion, and sinusitis.  This estimate of WTP to avoid a MRRAD, so defined, is
$38.37 (1990 $), or about $38.  Although Ostro and Rothschild (1989) estimated the relationship between
PM2.5 and MRADs, rather than MRRADs (a component of MRADs), it is likely that most of the MRADs
associated with exposure to PM2.5 are in fact MRRADs.  For the purpose of valuing this health endpoint,
then, we assumed that MRADs associated with PM exposure may be more specifically defined as
MRRADs, and therefore used the estimate of mean WTP to avoid a MRRAD.  We subtract asthma attacks
from  MRADs before they are valued.

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day other
than WLD) will be somewhat arbitrary because the endpoint itself is not precisely defined.  Many different
combinations of symptoms could presumably result in some minor or less minor restriction in activity. 
Krupnick and Kopp (1988) argued that mild symptoms will not be sufficient to result in a MRRAD, so that
WTP to avoid a MRRAD should exceed WTP to avoid any single mild symptom.  A single severe
symptom or a combination of symptoms could, however, be sufficient to restrict activity.  Therefore WTP
to avoid a MRRAD should, these authors argue, not necessarily exceed WTP to avoid a single severe
symptom or a combination of symptoms.  The “severity” of a symptom, however, is similarly not precisely
defined; moreover, one level of severity of a symptom could induce restriction of activity for one individual
while not doing so for another.  The same is true for any particular combination of symptoms.
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Given that there is inherently a substantial degree of arbitrariness in any point estimate of WTP to
avoid a MRRAD (or other kinds of restricted activity days), the reasonable bounds on such an estimate
must be considered.  By definition, a MRRAD does not result in loss of work.  WTP to avoid a MRRAD
should therefore be less than WTP to avoid a WLD.  At the other extreme, WTP to avoid a MRRAD
should exceed WTP to avoid a single mild symptom.  The highest IEc midrange estimate of WTP to avoid
a single symptom is $15.72 (1990 $), or about $16, for eye irritation.  The point estimate of WTP to avoid
a WLD in the benefit analysis is $83 (1990 $).  If all the single symptoms evaluated by the studies are not
severe, then the estimate of WTP to avoid a MRRAD should be somewhere between $16 and $83. 
Because the IEc estimate of $38 falls within this range (and acknowledging the degree of arbitrariness
associated with any estimate within this range), the IEc estimate is used as the mean of a triangular
distribution centered at $38, ranging from $16 to $61.  Adjusting to 1999 $, this is a triangular distribution
centered at $48.43, ranging from $20.40 to $77.76.

4.4.5 Asthma Attacks

Whittemore and Korn (1980) examined the relationship between air pollution and asthma attacks in
a survey of 443 children and adults, living in six communities in southern California during three 34-week
periods in 1972-1975.  The analysis focused on TSP and oxidants.  Respirable PM, NO2, SO2 were highly
correlated with TSP and excluded from the analysis. In a two pollutant model, daily levels of both TSP and
oxidants were significantly related to reported asthma attacks. 

Alternative Calculation: Valuing Asthma Attacks

Although we include the number of avoided asthma attacks in the primary analysis, we present the
value of these avoided attacks as an alternative calculation.  The value of avoiding an asthma attack is
estimated as the mean of four WTP estimates obtained in a study by Rowe and Chestnut (1986).  The four
WTP estimates correspond to four severity definitions of a “bad asthma day.”  The mean of the four
average WTPs is $32 (1990 $), or $40.80 in 1999 $.  The uncertainty surrounding this estimate was
characterized by a continuous uniform distribution on the range defined by the lowest and highest of the
four average WTP estimates from Rowe and Chestnut, [$12, $54], or [$15.30, $68.85] in 1999 $.

4.4.6 Work Loss Days (WLD)

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted
activity days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working
population, ages 18 to 65, living in metropolitan areas.  The annual national survey results used in this
analysis were conducted in 1976-1981.  Ostro reported that two-week average PM2.5 levels were
significantly linked to work-loss days, RADs, and RRADs, however there was some year-to-year
variability in the results.  Separate coefficients were developed for each year in the analysis (1976-1981);
these coefficients were pooled.  The coefficient used in the concentration-response function used here is a
weighted average of the coefficients in Ostro (1987, Table III) using the inverse of the variance as the
weight.



34 The estimate of the value of work loss days avoided could be improved if, instead of a single national wage rate, state-
specific or county-specific wage rates were used.

35 The relationship estimated by Crocker and Horst (1981) between wages and ozone is a log-log relationship.  Therefore
the elasticity of wages with respect to ozone is a constant, equal to the coefficient of log ozone in the model.
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Valuing WLD

Willingness to pay to avoid the loss of one day of work was estimated by dividing the median
weekly wage for 1990 (U.S. Bureau of the Census, 1992) by five (to get the median daily wage).  This
values the loss of a day of work at the national median wage for the day lost.  To account for regional
variations in median wages, the national daily median wage was adjusted on a county-by-county basis
using a factor based on the ratio of national median household income divided by each county’s median
income.    Each county’s income-adjusted willingness to pay to avoid the loss of one day of work was then
used to value the number of work loss days attributed to that county.  Valuing the loss of a day’s work at
the wages lost is consistent with economic theory, which assumes that an individual is paid exactly the
value of his labor.34

The use of the median rather than the mean, however, requires some comment.  If all individuals in
society were equally likely to be affected by air pollution to the extent that they lose a day of work because
of it, then the appropriate measure of the value of a work loss day would be the mean daily wage.  It is
highly likely, however, that the loss of work days due to pollution exposure does not occur with equal
probability among all individuals, but instead is more likely to occur among lower income individuals than
among high income individuals.  It is probable, for example, that individuals who are vulnerable enough to
the negative effects of air pollution to lose a day of work as a result of exposure tend to be those with
generally poorer health care. Individuals with poorer health care have, on average, lower incomes.  To
estimate the average lost wages of individuals who lose a day of work because of exposure to PM
pollution, then, would require a weighted average of all daily wages, with higher weights on the low end of
the wage scale and lower weights on the high end of the wage scale.  Because the appropriate weights are
not known, however, the median wage was used rather than the mean wage.  The  median is more likely to
approximate the correct value than the mean because means are highly susceptible to the influence of large
values in the tail of a distribution (in this case, the small percentage of very large incomes in the United
States), whereas the median is not susceptible to these large values.  The median daily wage in 1990 was
$83, or $105.83 in 1999$.  This is the value that was used to represent work loss days (WLD).  An
uncertainty distribution for this endpoint was unavailable, therefore the same central estimate ($101.92)
was used to value incidence changes at the fifth, mean, and ninety-fifth percentiles.

4.4.7 Worker Productivity

To monetize benefits associated with increased worker productivity resulting from improved ozone
air quality, we used information reported in Crocker and Horst (1981) and summarized in EPA (1994). 
Crocker and Horst examined the impacts of ozone exposure on the productivity of outdoor citrus workers. 
The study measured productivity impacts as the change in income associated with a change in ozone
exposure, given as the elasticity of income with respect to ozone concentration (-0.1427).35  The reported
elasticity translates a ten percent reduction in ozone to a 1.4 percent increase in income.  Given the median
daily income for outdoor workers engaged in strenuous activity reported by the 1990 U.S. Census, $93.05
per day (1999 $), a ten percent reduction in ozone yields about $1.31 in increased daily wages.  The median
daily income for outdoor workers is a national estimate, however.  We adjust this estimate to reflect



36Krupnick et al. (1990) list 13 specific “symptoms or conditions”: head cold, chest cold, sinus trouble, croup, cough with
phlegm, sore throat, asthma, hay fever, doctor-diagnosed ear infection, flu, pneumonia, bronchitis, and bronchiolitis.  The other six
symptoms or conditions are not specified.

37Details of the derivation of the C-R function based on the model used by Krupnick et al. (1990) are presented in Abt
Associates (1999a, p.  A-40).
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regional variations in income using a factor based on the ratio of national median household income divided
by a county’s median household income.  No information was available for quantifying the uncertainty
associated with the central valuation estimate.  Therefore, no uncertainty analysis was conducted for this
endpoint.

4.4.8 Supplemental Endpoints:  Acute Illnesses And Symptoms Not Requiring Hospitalization

The benefits associated with several endpoints are estimated separately but are not included in the
total benefits estimates because of the possibility of double counting of benefits. 

“Any of 19 Respiratory Symptoms”

Krupnick et al. (1990) estimated the impact of coefficient of haze (COH, a measure of particulate
matter concentrations), ozone and SO2 on the incidence of any of 19 symptoms or conditions in the adult
population, ages 18 to 65.36  They used a logistic regression model that takes into account whether a
respondent was well or not the previous day.  A key difference between this and the usual logistic model is
that the model they used includes a lagged value of the dependent variable.  This makes the derivation of a
C-R function somewhat more complicated than the usual logistic regression.37

 The presence of “any of 19 acute respiratory symptoms” is a somewhat subjective health effect
used by Krupnick et al. (1990).  Moreover, not all 19 symptoms are listed in the Krupnick et al. study.  It is
therefore not clear exactly what symptoms were included in the study.  Even if all 19 symptoms were
known, it is unlikely that WTP estimates could be obtained for all of the symptoms.  Finally, even if all 19
symptoms were known and WTP estimates could be obtained for all 19 symptoms, the assumption of
additivity of WTPs becomes tenuous with such a large number of symptoms.  The likelihood that all 19
symptoms would occur simultaneously, moreover, is very small. 

Valuing “Any of 19 Respiratory Symptoms”

The unit value and uncertainty distribution for “any of 19 respiratory symptoms” for this analysis
were obtained by adjusting the (rounded) values in 1990 $ used in the §812 Prospective analysis to 1999 $
by multiplying by 1.275.  Acute respiratory symptoms must be either upper respiratory symptoms or lower
respiratory symptoms.  In the absence of further knowledge about which of the two types of symptoms is
more likely to occur among the “any of 19 acute respiratory symptoms,” we assumed that they occur with
equal probability.  Because this health endpoint may also consist of combinations of symptoms, it was also
assumed that there is some (smaller) probability that upper and lower respiratory symptoms occur together. 
To value avoidance of a day of “the presence of any of 19 acute respiratory symptoms” we therefore
assumed that this health endpoint consists either of URS, or LRS, or both.  We also assumed that it is as
likely to be URS as LRS and that it is half as likely to be both together.  That is, it was assumed that “the
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presence of any of 19 acute respiratory symptoms” is a day of URS with 40 percent probability, a day of
LRS with 40 percent probability, and a day of both URS and LRS with 20 percent probability.  Using the
point estimates of WTP to avoid a day of URS and LRS derived above, the point estimate of WTP to avoid
a day of “the presence of any of 19 acute respiratory symptoms” is:

(0.40)($18.70) + (0.40)($11.82) + (0.20)($18.70 + $11.82) = $18.31, or about $18 (1990 $) .

This is $22.95 (=$18*1.275) in 1999 $.  Because this health endpoint is only vaguely defined, and because
of the lack of information on the relative frequencies of the different combinations of acute respiratory
symptoms that might qualify as “any of 19 acute respiratory symptoms,” the unit dollar value derived for
this health endpoint must be considered only a rough approximation.

The sources of uncertainty in the valuation of LRS and URS described above similarly exist in the
valuation of this health endpoint.  In particular, (1) “the presence of any of 19 acute respiratory symptoms”
may be comprised of one or more of a variety of symptoms, so that what is being valued may vary from
one occurrence to another; (2) for a given symptom, there is uncertainty about the mean WTP to avoid the
symptom; and (3) the WTP to avoid an occurrence of multiple symptoms may be greater or less than the
sum of the WTPs to avoid the individual symptoms.  

To characterize the uncertainty surrounding the estimated value of avoiding “any of 19 acute
respiratory symptoms,” we used the distributions described above for the input components, URS and
LRS.  On each iteration of a Monte Carlo procedure, URS was chosen with 40 percent probability, LRS
was chosen with 40 percent probability and URS+LRS was chosen with 20 percent probability.  Given the
choice, a dollar value was randomly selected from the appropriate distribution.  For example, if URS was
selected, a dollar value was selected from the continuous uniform distribution for URS.

Moderate or Worse Asthma

Ostro et al. (1991) examined the effect of air pollution on asthmatics, ages 18 to 70, living in
Denver, Colorado from December 1987 to February 1988.  The respondents in this study were asked to
record daily a subjective rating of their overall asthma status each day (0=none, 1=mild, 2=moderate,
3=severe, 4=incapacitating).  Ostro et al. then examined the relationship between moderate (or worse)
asthma and H+, sulfate, SO2, PM2.5, estimated PM2.5, PM10, nitrate, and nitric acid.  Daily levels of H+ were
linked to cough, asthma, and shortness of breath.  PM2.5 was linked to asthma.  SO2 was linked to shortness
of breath.  No effects were seen for other pollutants.

Valuing Moderate or Worse Asthma

The unit value and uncertainty distribution for moderate or worse asthma were assumed to be the
same as for an asthma attack (see above), based on four WTP estimates from Rowe and Chestnut (1986). 
The mean of the four average WTPs is $32 (1990 $), or $40.80 in 1999$.  The uncertainty surrounding
this estimate was characterized by a continuous uniform distribution on the range defined by the lowest and
highest of the four average WTP estimates from Rowe and Chestnut, [$12, $54], or [$15.30, $68.85] in
1999 $.

Although subjects’ assessment of what constitutes a “bad asthma day” varied considerably in the
Rowe and Chestnut (1986) study, the subjective assessment of an asthma day being bad is very similar to
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the subjective assessment of an asthma day being “of moderate or worse status” in the Ostro et al. (1991)
study, in which subjects were also asked their subjective assessments. 

Shortness of Breath

Using logistic regression, Ostro et al. (1995) estimated the impact of PM10, ozone, NO2, and SO2

on the incidence of coughing, shortness of breath, and wheezing in 83 African-American asthmatic children
aged 7-12 living in Los Angeles from August through September 1992.  Regression results show both PM10

and ozone significantly linked to shortness of breath; the beginning of an asthma episode was also
significantly linked to ozone.  Results for single-pollutant models only were presented in the published
paper.

Valuing Shortness of Breath

A point estimate of mean WTP to avoid a day of shortness of breath was derived as the mean of
the median estimates from two studies that evaluated this symptom.  The median estimate from Dickie et al.
(1987), was $0.00; the median estimate from Loehman et al. (1979) was $10.57, or about $10.60 (1990 $). 
The mean of these two medians is $5.30, or $6.76 in 1999$.  In the absence of sufficient information to
characterize the distribution of MWTP to avoid a day of shortness of breath, this distribution is roughly
approximated by a continuous distribution on the interval from the low estimate to the high estimate –
[$0.00, $10.60] in 1990 $, or [$0.00, $13.52] in 1999 $.



38 Hereafter referred to as Class I areas, which are defined as areas of the country such as national parks, national wilderness
areas, and national monuments that have been set aside under Section 162(a) of the Clean Air Act to receive the most stringent degree
of air quality protection.  Class I federal lands fall under the jurisdiction of three federal agencies, the National Park Service, the Fish
and Wildlife Service, and the Forest Service.

39 The Constant Elasticity of Substitution utility function has been chosen for use in this analysis due to its flexibility when
illustrating the degree of substitutability present in various economic relationships (in this case, the tradeoff between income and
improvements in visibility).
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5 Welfare Benefits

This analysis considers three types of benefits that are loosely termed “welfare” benefits.  These
include visibility improvements, reductions in agricultural crop damage, and reduced household soiling. 
We consider each in turn.

5.1 Visibility Benefits

Visibility degradation estimates used in this analysis are generated by the REMSAD model. 
Because these air quality-related changes in visibility are directly used in the benefits analysis, the
methodology for predicting visibility changes is not discussed here.  The visibility estimation is described in
detail in EPA (2000b), and is based on the methods in Sisler (1996).

Economic benefits may result from two broad categories of visibility changes: (1) changes in
“residential” visibility – i.e., the visibility in and around the locations where people live; and (2) changes in
“recreational” visibility at Class I areas – i.e., visibility at Class I national parks and wilderness areas.38  In
this analysis, only those recreational benefits in Class I areas that have been directly studied (in California,
the Southeast, and the Southwest) are included in the primary presentation of benefits; residential benefits
and recreational benefits in all U.S. Class I areas are presented as alternative calculations of visibility
benefits.

Within the category of recreational visibility, further distinctions have been made.  There is
evidence (Chestnut and Rowe, 1990) that an individual’s WTP for improvements in visibility at a Class I
area is influenced by whether it is in the region in which the individual lives, or whether it is somewhere
else.  In general people appear to be willing to pay more for visibility improvements at parks and
wilderness areas that are “in-region” than at those that are “out-of-region.”  This is plausible, because
people are more likely to visit, be familiar with, and care about parks and wilderness areas in their own part
of the country.

To value estimated visibility changes, we are using an approach consistent with economic theory. 
Below we discuss an application of the Constant Elasticity of Substitution (CES) utility function
approach39 to value both residential visibility improvements and visibility improvements at Class I areas in
the United States.  This approach is based on the preference calibration method developed by Smith et al.
(1999).  The presentation of this methodology is organized as follows.  The basic utility model is presented
in Section 5.1.1.  In Section 5.1.2 we discuss the measurement of visibility, and the mapping from
environmental “bads” to environmental “goods.”  In Sections 5.1.3 and 5.1.4 we summarize the
information that is available to estimate the parameters of the model corresponding to visibility at in-region



40We remind the reader that, although residential and recreational visibility benefits estimation is discussed simultaneously in
this section, benefits are calculated and presented separately for each visibility category.
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and out-of-region Class I areas, and visibility in residential areas, respectively, and we describe the
methods used to estimate these parameters.  Section 5.1.5 synthesizes the results.

5.1.1 Basic Utility Model

We begin with a CES utility function in which a household derives utility from 

(1) “all consumption goods,” X, 
(2) visibility in the residential area in which the household is located (“residential visibility”),40 
(3) visibility at Class I areas in the same region as the household (“in-region recreational

visibility”), and 
(4) visibility at Class I areas outside the household’s region (“out-of-region recreational

visibility”).  

There are a total of six regions being considered, so there are 5 regions for which any household is out-of-
region.  The utility function of a household in the nth residential area and the ith region of the country is:
       

where
Zn = the level of visibility in the nth residential area;
Qik = the level of visibility at the kth in-region park (i.e., the kth park in the ith region);
Qjk = the level of visibility at the kth park in the jth region ( for which the household is out-of-

region), j…i;
Ni = the number of Class I areas in the ith region;
Nj = the number of Class I areas in the jth region (for which the household is out-of-region), j…i;

and 

2, the (’s and *’s are parameters of the utility function corresponding to the visibility levels at residential
areas, and at in-region and out-of-region Class I areas, respectively.  In particular, the (ik's are the
parameters corresponding to visibility at in-region Class I areas; the *1’s are the parameters corresponding
to visibility at Class I areas in region 1 (California), if i…1; the *2’s are the parameters corresponding to
visibility at Class I areas in region 2 (Colorado Plateau), if i…2, and so forth.  Because the model assumes
that the relationship between residential visibility and utility is the same everywhere, there is only one 2. 
The parameter D in this CES utility function is an important determinant of the slope of the marginal WTP
curve associated with any of the environmental quality variables.  When D=1, the marginal WTP curve is
horizontal.  When D<1, it is downward sloping. 

The household’s budget constraint is:
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where m is income, and p is the price of X.  Without loss of generality, set p = 1.  The only choice variable
is X.  The household maximizes its utility by choosing X=m.  The indirect utility function for a household
in the nth residential area and the ith region is therefore

where Q denotes the vector of vectors, Q1, Q2, Q3, Q4, Q5, and Q6, and the unsubscripted ( and * denote
vectors as well.

Given estimates of D, 2, the (’s and the *’s, the household’s utility function and the corresponding
WTP functions are fully specified. The household’s WTP for any set of changes in the levels of visibility at
in-region Class I areas, out-of-region Class I areas, and the household’s residential area can be shown to
be:

The household’s WTP for a single visibility improvement will depend on its order in the series of visibility
improvements the household is valuing.  If it is the first visibility improvement to be valued, the
household’s WTP for it follows directly from the previous equation.  For example, the household’s WTP
for an improvement in visibility at the first in-region park, from Qi1 = Q0i1 to Qi1 = Q1i1, is

if this is the first (or only) visibility change the household values.

5.1.2 Measure of Visibility: Environmental “Goods” Versus “Bads”

In the above model, Q and Z are environmental “goods.” As the level of visibility increases, utility
increases.  The utility function and the corresponding WTP function both have reasonable properties.  The
first derivative of the indirect utility function with respect to Q (or Z) is positive; the second derivative is
negative.  WTP for a change from Q0 to a higher (improved) level of visibility, Q1, is therefore a concave
function of Q1, with decreasing marginal WTP.
 

The measure of visibility that is currently preferred by air quality scientists is the deciview, which
increases as visibility decreases.  Deciview, in effect, is a measure of the lack of visibility.  As deciviews
increase, visibility, and therefore utility, decreases.  The deciview, then, is a measure of an environmental
“bad.”  There are many examples of environmental “bads” – all types of pollution are environmental
“bads.”  Utility decreases, for example, as the concentration of particulate matter in the atmosphere
increases.  



41 There may be more than one “good” related to a given environmental “bad.”  To simplify the discussion, however, we
assume only a single “good.”

Q e PM= −1 α β .

42 Another example of an environmental “bad” is particulate matter air pollution (PM). The relationship between survival
probability (Q) and the ambient PM level is generally taken to be of the form

where " denotes the mortality rate (or level) when there is no ambient PM (i.e., when PM=0).  However, " is implicitly a function of
all the factors other than PM that affect mortality.  As these factors change (e.g., from one location to another), " will change (just as
visual range changes as light angle changes).  It is therefore possible to have many values of Q corresponding to a given value of PM,
as the values of " vary.
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One way to value decreases in environmental bads is to consider the “goods” with which they are
associated, and to incorporate those goods into the utility function.  In particular, if B denotes an
environmental “bad,” such that:

and the environmental “good,” Q, is a function of B,

then the environmental “bad” can be related to utility via the corresponding environmental “good”:41

The relationship between Q and B, F(B), is an empirical relationship that must be estimated.

There is a potential problem with this approach, however.  If the function relating B and Q is not
the same everywhere (i.e., if for a given value of B, the value of Q depends on other factors as well), then
there can be more than one value of the environmental good corresponding to any given value of the
environmental bad, and it is not clear which value to use.  This has been identified as a problem with
translating deciviews (an environmental “bad”) into visual range (an environmental “good”).  It has been
noted that, for a given deciview value, there can be many different visual ranges, depending on the other
factors that affect visual range – such as light angle and altitude.  We note here, however, that this problem
is not unique to visibility, but is a general problem when trying to translate environmental “bads” into
“goods.”42

In order to translate deciviews (a “bad”) into visual range (a “good”), we use a relationship derived
by Malm and Pitchford (1994) in which

where DV denotes deciview and VR denotes visual range (in kilometers).  Solving for VR as a function of
DV yields



43 Ideally, we would want the location- , time-, and meteorological condition-specific relationships between deciviews and
visual range, which could be applied as appropriate.  This is probably not feasible, however.
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This conversion is based on specific assumptions characterizing the “average” conditions of those factors,
such as light angle, that affect visual range.  To the extent that specific locations depart from the average
conditions, the relationship will be an imperfect approximation.43

5.1.3 Estimating the Parameters for Visibility at Class I Areas: the ((’s and **’s

As noted in Section 2, if we consider a particular visibility change as the first or the only visibility
change valued by the household, the household’s WTP for that change in visibility can be calculated, given
income (m), the “shape” parameter, D, and the corresponding recreational visibility parameter.  For
example, a Southeast household’s WTP for a change in visibility at in-region parks (collectively) from Q1 =
Q01 to Q1 = Q11 is:

if this is the first (or only) visibility change the household values.

Alternatively, if we have estimates of m as well as WTP1
in and WTP1

out of in-region and out-of-
region households, respectively, for a given change in visibility from Q01 to Q11 in Southeast parks, we can
solve for (1 and *1 as a function of our estimates of m, WTP1

in and WTP1
out, for any given value of D. 

Generalizing, we can derive the values of ( and * for the jth region as follows:

and

Chestnut and Rowe (1990) and Chestnut (1997) estimated WTP (per household) for specific
visibility changes at national parks in three regions of the United States – both for households that are in-
region (in the same region as the park) and for households that are out-of-region.  The Chestnut and Rowe
study asked study subjects what they would be willing to pay for each of three visibility improvements in
the national parks in a given region.  Study subjects were shown a map of the region, with dots indicating
the locations of the parks in question.  The WTP questions referred to the three visibility improvements in
all the parks collectively; the survey did not ask subjects’ WTP for these improvements in specific parks
individually.  Responses were categorized according to whether the respondents lived in the same region as
the parks in question (“in-region” respondents) or in a different region (“out-of-region” respondents). The
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areas for which in-region and out-of-region WTP estimates are available from Chestnut and Rowe (1990),
and the sources of benefits transfer-based estimates that we employ in the absence of estimates, are
summarized in Exhibit 5-1.  In all cases, WTP refers to WTP per household.

Exhibit 5-1  Available Information on WTP for Visibility Improvements in National Parks

Region of Park Region of Household

In-Regiona Out-of-Regionb

1. California WTP estimate from study WTP estimate from study

2. Colorado Plateau WTP estimate from study WTP estimate from study

3. Southeast United States WTP estimate from study WTP estimate from study

4. Northwest United States (based on benefits transfer from California)

5. Northern Rockies (based on benefits transfer from Colorado Plateau)

6. Rest of United States (based on benefits transfer from Southeast U.S.)

a In-region” WTP is WTP for a visibility improvement in a park in the same region as that in which the household is located.  For
example, in-region WTP in the “Southeast” row is the estimate of the average Southeast household’s WTP for a visibility
improvement in a Southeast park. 

b Out-of-region” WTP is WTP for a visibility improvement in a park that is not in the same region in which the household is
located.  For example, out-of-region WTP in the “Southeast” row is the estimate of WTP for a visibility improvement in a park in
the Southeast by a household outside of the Southeast.  

In the primary calculation of visibility benefits for this analysis, only visibility changes at parks
within visibility regions for which a WTP estimate was available from Chestnut and Rowe (1990) are
considered (for both in- and out-of-region benefits).  Primary estimates will not include visibility benefits
calculated by transferring WTP values to visibility changes at parks not included in the Chestnut and Rowe
study.  Transferred benefits at parks located outside of the Chestnut and Rowe visibility regions will,
however, be included as an alternative calculation.

The values of the parameters in a household’s utility function will depend on where the household
is located.  The region-specific parameters associated with visibility at Class I areas (that is, all parameters
except the residential visibility parameter) are arrayed in Exhibit 5-2.  The parameters in columns 1-3 can
be directly estimated using WTP estimates from Chestnut and Rowe (1990) (the columns labeled “Region
1,” “Region 2,” and “Region 3").
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Exhibit 5-2  Summary of Region-Specific Recreational Visibility Parameters to be Estimated in
Household Utility Functions

Region of
Household

Region of Park

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Region 1 ((1
a **2 **3 *4 *5 *6

Region 2 **1 ((2 **3 *4 *5 *6

Region 3 **1 **2 ((3 *4 *5 *6

Region 4 **1 **2 **3 (4 *5 *6

Region 5 **1 **2 **3 *4 (5 *6

Region 6 **1 **2 **3 *4 *5 (6

a The parameters arrayed in this table are region-specific rather than park-specific or wilderness area-specific.  For example, *1 is
the parameter associated with visibility at “ Class I areas in region 1" for a household in any region other than region 1.  The
benefits analysis must derive Class I area-specific parameters – e.g., *1k, for the kth Class I area in the first region.  

For the three regions covered in Chestnut and Rowe (1990) (California, the Colorado Plateau, and
the Southeast United States), we can directly use the in-region WTP estimates from the study to estimate
the parameters in the utility functions corresponding to visibility at in-region parks ((1); similarly, we can
directly use the out-of-region WTP estimates from the study to estimate the parameters for out-of-region
parks (*1).  For the other three regions not covered in the study, however, we must rely on benefits transfer
to estimate the necessary parameters.    

While Chestnut and Rowe (1990) provide useful information on households’ WTP for visibility
improvements in national parks, there are several significant gaps remaining between the information
provided in that study and the information necessary for the benefits analysis.  First, as noted above, the
WTP responses were not park-specific, but only region-specific.  Because visibility improvements vary
from one park in a region to another, the benefits analysis must value park-specific visibility changes. 
Second, not all Class I areas in each of the three regions considered in the study were included on the maps
shown to study subjects.  Because the focus of the study was primarily national parks, most Class I
wilderness areas were not included.  Third, only three regions of the United States were included, leaving
the three remaining regions without direct WTP estimates.  

In addition, Chestnut and Rowe (1990) elicited WTP responses for three different visibility
changes, rather than a single change.  In theory, if the CES utility function accurately describes household
preferences, and if all households in a region have the same preference structure, then households’ three
WTP responses corresponding to the three different visibility changes should all produce the same value of
the associated recreational visibility parameter, given a value of D and an income, m.  In practice, of
course, this is not the case.  

In addressing these issues, we take a three-phase approach:
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(1) We estimate region-specific parameters for the region in the modeled domain covered by
Chestnut and Rowe (1990) (California, the Colorado Plateau, and the Southeast) – (1, (2, and (3  and *1,
*2, and *3.  (2) We infer region-specific parameters for those regions not covered by the Chestnut and Rowe
study (the Northwest United States, the Northern Rockies, and the rest of the U.S.) –  (4, (5, and (6 and *4,
*5, and *6.  (3) We derive park- and wilderness area-specific parameters within each region ((1k and *1k, for
k=1, ..., N1; (2k and *2k, for k=1, ..., N2; and so forth).

The question that must be addressed in the first phase is how to estimate a single region-specific in-
region parameter and a single region-specific out-of-region parameter for each of the three regions covered
in Chestnut and Rowe (1990) from study respondents’ WTPs for three different visibility changes in each
region.  All parks in a region are treated collectively as if they were a single “regional park” in this first
phase.  In the second phase, we infer region-specific recreational visibility parameters for regions not
covered in the Chestnut and Rowe study (the Northwest United States, the Northern Rockies, and the rest
of the U.S.).  As in the first phase, we ignore the necessity to derive park-specific parameters at this phase. 
Finally, in the third phase, we derive park- and wilderness area-specific parameters for each region.

Estimating Region-Specific Recreational Visibility Parameters for the Region Covered in the
Chestnut and Rowe Study (Regions 1, 2, and 3) 

Given a value of D and estimates of m and in-region and out-of-region WTPs for a change from Q0

to Q1 in a given region, the in-region parameter, (, and the out-of-region parameter, *, for that region can
be solved for.  Chestnut and Rowe (1990), however, considered not just one, but three visibility changes in
each region, each of which results in a different calibrated ( and a different calibrated *, even though in
theory all the (’s should be the same and similarly, all the *’s should be the same.  For each region,
however, we must have only a single ( and a single *.  

Denoting  as our estimate of  ( for the jth region, based on all three visibility changes, we chose$γ j

to best predict the three WTPs observed in the study for the three visibility improvements in the jth$γ j

region.  First, we calculated , i=1, 2, 3, corresponding to each of the three visibility improvements$γ ji

considered in the study.  Then, using a grid search method beginning at the average of the three ’s , we$γ ji

chose to minimize the sum of the squared differences between the WTPs we predict using and the$γ j
$γ j

three region-specific WTPs observed in the study.  That is, we selected  to minimize:$γ j

where WTPij and WTPij( ) are the observed and the predicted WTPs for a change in visibility in the jth$γ j

region from Q0 = Q0i to Q1= Q1i, i=1, ..., 3.  An analogous procedure was used to select an optimal *, for
each of the three regions in the Chestnut and Rowe study.

Inferring Region-Specific Recreational Visibility Parameters for Regions Not Covered in the
Chestnut and Rowe Study (Regions 4, 5, and 6) 



44 We acknowledge that reliance on visitation rates does not get at nonuse value.
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One possible approach to estimating region-specific parameters for regions not covered by
Chestnut and Rowe (1990) ((4, (5, and (6 and *4, *5, and *6) is to simply assume that households’ utility
functions are the same everywhere, and that the environmental goods being valued are the same – e.g., that
a change in visibility at national parks in California is the same environmental good to a Californian as a
change in visibility at national parks in Minnesota is to a Minnesotan.  

For example, to estimate *4 in the utility function of a California household, corresponding to
visibility at national parks in the Northwest United States, we might assume that out-of-region WTP for a
given visibility change at national parks in the Northwest United States is the same as out-of-region WTP
for the same visibility change at national parks in California (income held constant).  Suppose, for
example, that we have an estimated mean WTP of out-of-region households for a visibility change from Q01

to Q11 at national parks in Califonia (region 1),  denoted WTP1
out.  Suppose the mean income of the out-of-

region subjects in the study was m.  We might assume that, for the same change in visibility at national
parks in the Northwest United States, WTP4

out = WTP1
out among out-of-region individuals with income m.

 
We could then derive the value of *4, given a value of D as follows:

where Q04 = Q01 and Q14 = Q11, (i.e., where it is the same visibility change in parks in region 4 that was
valued at parks in the region 1). 

This benefits transfer method assumes that (1) all households have the same preference structures
and (2) what is being valued in the Northwest United States (by a California household) is the same as
what is being valued in the California (by all out-of-region households).  While we cannot know the extent
to which the first assumption approximates reality, the second assumption is clearly problematic.  National
parks in one region are likely to differ from national parks in another region in both quality and quantity
(i.e., number of parks).  

One statistic which is likely to reflect both the quality and quantity of national parks in a region is
the average annual visitation rate to the parks in that region.  A reasonable way to gauge the extent to
which out-of-region people would be willing to pay for visibility changes in parks in the Northwest United
States versus in California might be to compare visitation rates in the two regions.44  Suppose, for example,
that twice as many visitor-days are spent in California parks per year as in parks in the Northwest United
States per year.  This could be an indication that the parks in California are in some way more desirable
than those in the Northwest United States and/or that there are more of them -- i.e., that the environmental
goods being valued in the two regions (“visibility at national parks”) are not the same.  

A preferable way to estimate *4, then, might be to assume the following relationship:
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(income held constant), where n1 = the average annual number of visitor-days to California parks and n4 =
the average annual number of visitor-days to parks in the Northwest United States.  This implies that 

for the same change in visibility in region 4 parks among out-of-region individuals with income m.  If, for
example, n1 = 2n4, WTP4

out would be half of WTP1
out.  The interpretation would be the following:

California national parks have twice as many visitor-days per year as national parks in the Northwest
United States; therefore they must be twice as desirable/plentiful; therefore, out-of-region people would be
willing to pay twice as much for visibility changes in California parks as in parks in the Northwest United
States; therefore a Californian would be willing to pay only half as much for a visibility change in national
parks in the Northwest United States as an out-of-region individual would be willing to pay for the same
visibility change in national parks in California.  This adjustment, then, is based on the premise that the
environmental goods being valued (by people out-of-region) are not the same in all regions.   

The parameter *4 is estimated as shown above, using this adjusted WTP4
out.  The same procedure

is used to estimate *5 and *6.  We estimate (4, (5, and (6 in an analogous way, using the in-region WTP
estimates from the transfer regions, e.g.,

Estimating Park- and Wilderness Area-Specific Parameters

As noted above, Chestnut and Rowe (1990) estimated WTP for a region’s national parks
collectively, rather than providing park-specific WTP estimates.  The (’s and *’s are therefore the
parameters that would be in household utility functions if there were only a single park in each region, or if
the many parks in a region were effectively indistinguishable from one another.  Also noted above is the
fact that the Chestnut and Rowe study did not include all Class I areas in the regions it covered, focusing
primarily on national parks rather than wilderness areas.  Most Class I wilderness areas were not
represented on the maps shown to study subjects.  In California, for example, there are 31 Class I areas,
including 6 national parks and 25 wilderness areas.  The Chestnut and Rowe study map of California
included only 10 of these Class I areas, including all six of the national parks.  It is unclear whether
subjects had in mind “all parks and wilderness areas” when they offered their WTPs for visibility
improvements, or whether they had in mind the specific number of (mostly) parks that were shown on the
maps.  The derivation of park- and wilderness area-specific parameters depends on this.

Derivation of Region-specific WTP for National Parks and Wilderness Areas  

If study subjects were lumping all Class I areas together in their minds when giving their WTP
responses, then it would be reasonable to allocate that WTP among the specific parks and wilderness areas
in the region to derive park- and wilderness area-specific (’s and *’s for the region.  If, on the other hand,
study subjects were thinking only of the (mostly) parks shown on the map when they gave their WTP
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response, then there are two possible approaches that could be taken.  One approach assumes that
households would be willing to pay some additional amount for the same visibility improvement in
additional Class I areas that were not shown, and that this additional amount can be estimated using the
same benefits transfer approach used to estimate region-specific WTPs in regions not covered by Chestnut
and Rowe (1990).

However, even if we believe that households would be willing to pay some additional amount for
the same visibility improvement in additional Class I areas that were not shown, it is open to question
whether this additional amount can be estimated using benefits transfer methods.  A third possibility, then,
is to simply omit wilderness areas from the benefits analysis.  For this analysis we calculate visibility
benefits assuming that study subjects lumped all Class I areas together when stating their WTP, even if
these Class I areas were not present on the map.

Derivation of park- and wilderness area-specific WTPs, given region-specific WTPs for
national parks and wilderness areas

The first step in deriving park- and wilderness area-specific parameters is the estimation of park-
and wilderness area-specific WTPs.  To derive park and wilderness area-specific WTPs, we apportion the
region-specific WTP to the specific Class I areas in the region according to each area’s share of the
region’s visitor-days.  For example, if WTP1

in and WTP1
out denote the mean household WTPs in the

Chestnut and Rowe (1990) study among respondents who were in-region-1 and out-of-region-1,
respectively, n1k denotes the annual average number of visitor-days to the kth Class I area in California,
and n1 denotes the annual average number of visitor-days to all Class I areas in California (that are
included in the benefits analysis), then we assume that

and

Using WTPj
in and WTPj

out, either from the Chestnut and Rowe study (for j = 1, 2, and 3) or derived by the
benefits transfer method (for j = 4, 5, and 6), the same method is used to derive Class I area-specific WTPs
in each of the six regions. 

While this is not a perfect allocation scheme, it is a reasonable scheme, given the limitations of
data.  Visitors to national parks in the United States are not all from the United States, and certainly not all
from the region in which the park is located.  A very large proportion of the visitors to Yosemite National
Park in California, for example, may come from outside the U.S.  The above allocation scheme implicitly
assumes that the relative frequencies of visits to the parks in a region from everyone in the world is a



45 This might be thought of as two assumptions: (1) that the relative frequencies of visits to the parks in a region  from
everyone in the world is a reasonable representation of the relative frequency of visits from people in the United States – i.e., that the
parks that are most popular (receive the most visitors per year) in general are also the most popular among Americans; and (2) that the
relative frequency with which Americans visit each of their parks is a good index of their relative WTPs for visibility improvements at
these parks.

46 (j* is only approximately equal to the right-hand side because, although it is the optimal value designed to reproduce as
closely as possible all three of the WTPs corresponding to the three visibility changes in the Chestnut and Rowe study, (j* will not
exactly reproduce any of these WTPs. 
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reasonable index of the relative WTP of an average household in that region (WTPj
in) or out of that region

(but in the U.S.) (WTPj
out) for visibility improvements at these parks.45 

A possible problem with this allocation scheme is that the relative frequency of visits is an
indicator of use value but not necessarily of nonuse value, which may be a substantial component of the
household’s total WTP for a visibility improvement at Class I areas.  If park A is twice as popular (i.e., has
twice as many visitors per year) as park B, this does not necessarily imply that a household’s WTP for an
improvement in visibility at park A is twice its WTP for the same improvement at park B.  Although an
allocation scheme based on relative visitation frequencies has some obvious problems, however, it is still
probably the best way to allocate a collective WTP.

Derivation of park- and wilderness area-specific parameters, given park- and wilderness
area-specific WTPs

Once the Class I area-specific WTPs have been estimated, we could derive the park- and
wilderness area-specific (’s and *’s using the method used to derive region-specific (’s and *’s.  Recall
that that method involved (1) calibrating ( and * to each of the three visibility improvements in the
Chestnut and Rowe study (producing three (’s and three *’s), (2) averaging the three (’s and averaging the
three *’s, and finally, (3) using these average ( and * as starting points for a grid search to find the optimal
( and the optimal * – i.e., the ( and * that would allow us to reproduce, as closely as possible, the three in-
region and three out-of-region WTPs in the study for the three visibility changes being valued.

Going through this procedure for each national park and each wilderness area separately would be
very time consuming, however.  We therefore used a simpler approach, which produces very close
approximations to the (’s and *’s produced using the above approach.  If:

WTPj
in = the in-region WTP for the change in visibility from Q0 to Q1 in the jth region;

WTPjk
in= the in-region WTP for the same visibility change (from Q0 to Q1) in the kth Class I

area in the jth region (= sjk*WTPj
in, where sjk is the kth area’s share of visitor-days

in the jth region);
m = income;
(j* =  the optimal value of ( for the jth region; and
(jk = the value of (jk calibrated to WTPjk

in and the change from Q0 to Q1;

then46:



47 This method uses a single in-region WTP and a single out-of-region WTP per region.  Although the choice of WTP will
affect the resulting adjustment factors (the ajk’s) and therefore the resulting (jk’s and *jk’s, the effect is negligible.  We confirmed this
by using each of the three in-region WTPs in California and comparing the resulting three sets of (jk’s and *jk’s, which were different
from each other by about one one-hundredth of a percent.
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which implies that:

where:

We use the adjustment factor, ajk, to derive (jk from (j*, for the kth Class I area in the jth region.  We use an
analogous procedure to derive *jk from *j* for the kth Class I area in the jth region (where, in this case, we
use WTPj

out and WTPjk
out instead of WTPj

in and WTPjk
in).47 

 

5.1.4 Estimating the Parameter for Visibility in Residential Areas: 22

The estimate of 2 is based on McClelland et al. (1991), in which household WTP for
improvements in residential visibility was elicited from respondents in Chicago and Atlanta.  A notable
difference between the Chestnut and Rowe study and the McClelland study is that, while the former elicited
WTP responses for three different visibility changes, the latter considered only one visibility change.  The
estimation of 2 was therefore a much simpler procedure, involving a straightforward calibration to the
single income and WTP in the study:

5.1.5 Putting it All Together:  the Household Utility and WTP Functions
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Given an estimate of 2, derived as shown in Section 5, and estimates of the (’s and *’s, derived as
shown in Section 4, based on an assumed or estimated value of D, the utility and WTP functions for a
household in any region are fully specified.  We can therefore estimate the value to that household of
visibility changes from any baseline level to any alternative level in the household’s residential area and/or
at any or all of the Class I areas in the United States, in a way that is consistent with economic theory.  In
particular, the WTP of a household in the ith region and the nth residential area for any set of changes in
the levels of visibility at in-region Class I areas, out-of-region Class I areas, and the household’s residential
area (given by equation (24)) is:

The national benefits associated with any suite of visibility changes is properly calculated as the
sum of these household WTPs for those changes.  The benefit of any subset of visibility changes (e.g.,
changes in visibility only at Class I areas in California) can be calculated by setting all the other
components of the WTP function to zero (that is, by assuming that all other visibility changes that are not
of interest are zero).  This is effectively the same as assuming that the subset of visibility changes of
interest is the first or the only set of changes being valued by households.  Estimating benefit components in
this way will yield slightly upward biased estimates of benefits, because disposable income, m, is not being
reduced by the WTPs for any prior visibility improvements.  That is, each visibility improvement (e.g.,
visibility at Class I areas in the California) is assumed to be the first, and they cannot all be the first.  The
upward bias should be extremely small, however, because all of the WTPs for visibility changes are likely
to be very small relative to income.

5.2 Agricultural Benefits

Changes in ozone concentrations are known to affect agricultural production, affecting agricultural
crops to different degrees depending on their sensitivity.  Estimating the economic benefits associated with
these changes in production requires several steps.  Estimated changes in ozone concentrations are
combined with experimental dose-response functions to estimate crop yield changes.  The effect of yield
changes on agricultural cropping decisions and resulting production and prices are then evaluated using a
model of the agricultural sector, resulting in estimates of changes in farm income and consumer welfare. 
Each of the steps involved in this analysis is described in more detail in the following sections.  Section
5.2.1 describes the source of exposure-response functions and the selection of an index of ozone exposure. 
Section 5.2.2 describes the derivation of estimated ozone concentrations under alternative regulatory
profiles.  The method for estimating yield changes is described in Section 5.2.3, and the agricultural model
used to estimate the impact of changes in yield is discussed in Section 5.2.4.  The results are presented in
Chapter 6.

5.2.1 Exposure-Response Functions

Experimental data to evaluate the response of crops to ozone has been collected for a limited
number of crops under the National Crop Loss Assessment Network (NCLAN) program.  The objective of
this program was to employ a consistent experimental methodology to provide comparable results across
crops.  The crops included in the NCLAN experiments are corn, cotton, peanuts, sorghum, soybeans,
winter wheat, potatoes, lettuce, kidney beans, tomatoes, and hay.  For many crops, the NCLAN program
evaluated the effects of ozone on several different cultivars.  Although not necessarily representative of the
full range of variability in crop response, the results for different cultivars do permit identification of a



48Data were not sufficient to develop functions for tomatoes or hay.
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range of responsiveness.  The most tolerant and responsive functions are used to represent minimum and
maximum impacts, within the limits of available data.

In its analysis of the welfare benefits associated with ozone National Ambient Air Quality
Standards (NAAQS), U.S. EPA elected to represent crop exposure to ozone as a cumulative index (U.S.
EPA, 1996a).  The index selected is the SUM06 index, which sums the ozone concentration for every hour
that exceeds 0.06 ppm, within a 12-hour period from 8:00 A.M. to 8:00 P.M.

Use of cumulative exposure-response functions is relatively recent, and few experiments have been
designed or reported in terms of the SUM06 index.  Because the NCLAN program used a consistent
protocol and developed a database of experimental conditions and results for all of its studies, U.S. EPA’s
Environmental Research Laboratory (ERL) was able to use original data from NCLAN studies to develop
SUM06 exposure response functions for most NCLAN crops48 (Lee and Hogsett, 1996).   In addition, the
agricultural model used in this analysis does not reflect non-commodity crops such as lettuce and kidney
beans (described below).  Exhibit 5-3 presents the exposure-response functions used in this analysis.

Exhibit 5-3  Ozone Exposure-Response Functions for Selected Crops (SUM06)

Ozone Index Quantity Crop Function
Median

Experimental
Duration (Days)

Median
Duration
(Months)

SUM06 Max Cotton 1-exp(-(index/78)^1.311) 119 4

SUM06 Max Field Corn 1-exp(-(index/92.4)^2.816) 83 3

SUM06 Max Grain Sorghum 1-exp(-(index/177.8)^2.329) 85 3

SUM06 Max Peanut 1-exp(-(index/99.8)^2.219) 112 4

SUM06 Max Soybean 1-exp(-(index/131.4)^1) 104 3

SUM06 Max Winter Wheat 1-exp(-(index/27.2)^1.0) 58 2

SUM06 Min Cotton 1-exp(-(index/116.8)^1.523) 119 4

SUM06 Min Field Corn 1-exp(-(index/94.2)^4.307) 83 3

SUM06 Min Grain Sorghum 1-exp(-(index/177.8)^2.329) 85 3

SUM06 Min Peanut 1-exp(-(index/99.8)^2.219) 112 4

SUM06 Min Soybean 1-exp(-(index/299.7)^1.547) 104 3

SUM06 Min Winter Wheat 1-exp(-(index/72.1)^2.353) 58 2

Source: Lee and Hogsett (1996)
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The form of these functions is a Weibull specification transformed to predict a yield loss relative to
conditions of “clean air”, or a zero SUM06 value.  The resulting equation is in the form of:

Y = 1- e[-(SUM06/B)^C],

where:

Y = predicted relative yield loss (PRYL), expressed as a decimal value (i.e.,
not multiplied by 100 to report as a percent loss), and relative to a zero
SUM06 (or clean air) condition

SUM06 = cumulative SUM06 ozone statistic at a specified level of spatial
representation, in ppm

B, C = statistically estimated parameters, unitless.

Application of Exposure Response Functions to a Non-Zero Baseline 

There is an issue associated with applying the yield loss functions to analysis of alternative
regulatory profiles.  The functions provide a predicted yield loss relative to “clean” air, while regulatory
analysis needs to compare regulatory options to a baseline, non-zero ozone condition.  Therefore, the yield
change resulting from the regulatory scenario is evaluated as the yield loss relative to clean air under the
regulatory scenario being evaluated compared to the yield loss under baseline conditions.

To address this issue, the change in yield under clean air conditions can be divided by the baseline
yield.  If yield under clean conditions is 100 percent of possible yield, then baseline yield in this context is 1
minus baseline yield loss.  Thus the change in yields relative to the baseline can be given as:

(PRYLbaseline - PRYLcontrol)/(1-PRYLbaseline).

Ozone Index Computation

In order to accurately reflect changes in yields using exposure response functions, they must be
applied in a way that is consistent with the experimental conditions used to generate the functions. 
Specifically, the ozone index, in this case the SUM06 index, needs to be consistent with ozone exposure
used in the experimental derivation of the function.  For example, if the function is a 12-hour exposure
function, then the index used must be a 12-hour index.  Another component of the experimental exposure is
the duration of the experiment.  A precise reflection of experimental conditions would require that the ozone
index should be calculated for the same number of days as used in the experiment for each crop.  However,
in the benefits analysis for the 1997 ozone NAAQS RIA, it was determined that the median duration of all
NCLAN experiments for a given crop provided a statistically sound reflection of duration for the purposes
of estimating SUM06 indices for estimating agricultural benefits (Mathtech1997).  The median durations
for each crop are reported in Exhibit 5-3 in both days and months.  The ozone NAAQS analysis
constructed the ozone index based on the nearest number of months; this analysis constructed the index
based on the number of days.  

Finally, because growing seasons vary throughout the U.S., the exposure needs to reflect the
months in which a crop would be grown in a given location.  To calculate the SUM06 index for the



49Peanut emergence and harvest dates were taken from the U.S. EPA PRZM-2 Model data.
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appropriate growing season, state-level data on planting and harvesting dates was used in this analysis49

(U.S. Department of Agriculture, 1984; U.S. EPA, 1993).  To calculate the cumulative SUM06 index, the
experimental duration for each crop was anchored on that crop’s harvest date in each state in order to most
closely approximate the relevant period of exposure for yield analysis.  The harvest date was assumed to be
the first day in the month of harvest, so that the SUM06 index includes the months up to but not including
the harvest month.  

The baseline and control ozone data for this analysis were developed from monthly SUM06 values,
requiring several steps in the calculation of a duration-based index.  First, starting at the month before the
harvest month, each full month of SUM06 data was summed.  The ozone value for the first month of the
duration period was calculated as the fraction of the remaining days in the duration period to the number of
days in the month.  For example, soybeans have a 104-day duration, translating to 3 full months plus a
fraction of the first month in the growing season.  If soybeans are harvested in October in a given state,
three full months of data starting in September are summed (91 days), along with 13 days of June, or 0.43
of the June SUM06 data, to obtain the 104-day SUM06 index.  This approach implicitly assumes an equal
average daily SUM06 within each bi-monthly period.   The index was calculated on a county level
assuming all counties reflect the state-level growing seasons.

While the ozone data in this analysis were modeled from May through September, the growing
season for some crops includes April, October, and November.  To estimate SUM06 values for these
unmodeled months, base-year ozone values were used.

5.2.2 Estimation of Yield Changes

In this analysis, use of a single exposure response function to estimate changes in yields implies
that all producers are using a single cultivar of a given crop.  This, combined with the limited number of
cultivars evaluated in the NCLAN program, introduces an unquantifiable uncertainty into the estimation of
yield changes.  The most sensitive cultivar was used to represent the upper bound of the range that could be
estimated, and the least sensitive cultivar was used to represent the lower bound of that range.  

Using the exposure response functions and the SUM06 ozone indices, county-level yield changes
were estimated between each regulatory profile and the baseline.  County level yield changes were then
aggregated to the state level using 1997 data on county level production as weights (U.S. Department of
Agriculture, 1988a): the resulting state-level yield changes were used for quality control purposes.  The
model used to estimate changes in the agricultural sector resulting from yield changes (described 
below) requires a national level yield change; this was calculated in the same manner as was the change in
state-level yields.

5.2.3 AGSIM© Model

AGSIM© is an econometric-simulation model that is based on a large set of statistically estimated
demand and supply equations for agricultural commodities produced in the United States.  This model has
been peer-reviewed and utilized in many pesticide and other major agricultural policy evaluations (Taylor
et al., 1993).



50 To the extent that the Rule increases diesel prices, shipping prices for some agricultural products may increase, and may
cause some farmers to change their production decisions.  The magnitude of such an impact is likely to be small.  Time and resources
did not permit modeling this possible impact on their decision-making.
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The model is capable of analyzing the effects of changes in policies that affect crop yields or
production costs.  This is achieved by estimating how farmers will adjust crop acreage between
commodities when relative profitability changes as a result of policy-induced crop yield and/or production
cost changes.50  Acreage and yield changes from various scenarios will affect total production of crops,
which simultaneously affects both commodity prices and consumption. Commodity price changes, in turn,
affect profitability and cropping patterns in subsequent years.  Federal farm program and conservation
reserve effects are also incorporated into the model.  The model has been adapted to reflect the projections
to 2010 from the last future year for which baseline forecasts are available: 2007.  Although ozone impacts
will be experienced far in the future, it was not possible to forecast the AGSIM© model far beyond USDA
baseline forecasts that extend to 2007.  Therefore, the 2030 ozone conditions were modeled using the 2010
version of the model.

Model Specification

AGSIM© is based on a set of dynamic supply and demand equations for major crops. 
Commodities are generally linked on both the supply side and demand side of markets.  Crops included in
the model are corn, grain sorghum, barley, oats, wheat, soybeans, cotton, hay, peanuts and rice.  The
simulation component of the model finds the set of prices for all commodities endogenous to the model that
simultaneously clear all markets in each year over the simulation period.  Dynamics are incorporated into
the econometric specification and thus incorporated into the simulation model. All equations in the model
were econometrically estimated, except a few policy equations that were based on legislated formula.

Supply Components

The crop supply component of AGSIM© is based on a set of supply equations for the major field
crops produced in the United States.  Effects of farm programs, specifically the 1985 Food Security Act
(FSA), the 1990 Food Agricultural Conservation and Trade Act (FACTA), and the 1996 Federal
Agricultural Improvement and Reform Act (FAIR), are reflected in the econometric specification of the
supply component of the model, and thus are included in the simulation model.  

Ex ante simulation of environmental policy will likely involve an assumption of continuation of the
1996 FAIR Act indefinitely.  However, since most of the historical observations on which supply equations
were econometrically estimated occurred under different programs, it is important to consider how
historical equations reflect the 1996 FAIR Act.  The basic philosophy that guided inclusion of farm
program features into the supply component of the model follow.  First, beginning with the 1985 FSA,
continuing with the 1990 FACTA, and now with the 1996 FAIR Act, North American Free Trade
Agreement (NAFTA) and the General Agreement on Tariffs and Trade (GATT), farm and international
trade policy has moved U.S. agriculture to a market orientation.  Although the 1985 FSA and the 1990
FACTA had price support and acreage diversion features, they embodied a strong market orientation.  For
all major program crops (in AGSIM©), the acreage devoted to the crop exceeded the acreage under
government programs.  Thus, at the margin, market prices (and not support prices) influenced crop
acreage.  Another way of looking at this is that farm programs have influenced crops at the intra-margin,
while the market has influenced crops at the margin.  Thus, after accounting for acreage diverted under



51Weights used in computing a composite expected return variable were the acreage harvested of each crop the previous
year divided by total acreage harvested the previous year.
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farm programs, expected prices determine acreage.  For these reasons, AGSIM© should be valid for
simulating agricultural markets under the market conditions established under the 1996 FAIR Act.

Sets of equations that comprise the supply component of the current version of the model include:
(1) acreage planted to each crop, (2) acreage harvested of each crop, (3) acreage in annual set-aside or
acreage reduction programs (ARP) by crop, (4) acreage in cultivated summer fallow, (5) crop yields per
harvested acre, (6) rate of participation in Federal farm programs by crop, and (7) annual set-aside rates by
crop under past farm programs, as related to stock levels (historically legislated) and thus related to market
price.  Identities in the model are: (a) production is the product of acreage harvested and yield per harvested
acre, and (b) the quantity supplied equals the quantity demanded for each commodity (market clearing). 
Specification of each of these sets of equations follows.

Acreage Planted Equations.  Acreage planted is the key behavioral relationship in the supply
component of the model.  Acreage planted of a particular crop depends on expected per-acre net returns for
that crop, expected per-acre net returns for competing crops, and farm program variables. In algebraic (and
Fortran) form, the acreage planted equation is: 

(1) acresp(ic,it,irun) = bc(ic) + bap(ic)*acresp(ic,it-1,irun) + bcrp(ic)*acrp(ic,it,irun) +
bdiv(ic)*acrediv + brm(ic)*rerntm(ic,it,irun) +
ber(ic)*rerentnp(it,irun) + byr(ic)*time(it) + bd83(ic)*dumb83(it)

where: 
acresp(ic,it,irun) = acreage planted to the icth crop in the itth year and in simulation

“irun”, 
acrp(ic,it,irun) = acreage of crop “ic” that was placed in the conservation reserve

program, 
acrediv = acreage diverted under annual set-aside programs, 
rerentm(ic,it,irun) = real expected per acre returns over variable costs for the icth crop,
rerentnp(it,irun)  = real expected per acre returns over variables costs computed as a

weighted average51 of rerentm(ic,it,irun) over all endogenous
crops,

time(it) = a time-trend variable, and
dumb83(it) = a binary dummy variable to account for the PIK program in crop

year 1983.

The remaining variables in equation (1) represent estimated coefficients.  A single run of AGSIM
involves two simulations, one for the baseline (irun=0) and one for the policy scenario (irun=1).  These two
simulations are then compared to estimate the economic impacts of the policy scenario.

Expected returns over variable costs, rerentm(ic,it,irun), is defined as:

(1a) rerntm(ic,it,irun)  =  rp(ic,it-1,irun)*ey(ic,it,irun) - rcost(ic,it,irun)

where:
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rp(ic,it-1,irun) = real price the previous crop year (actual or simulated, depending on the
time period), 

ey(ic,it,irun) = expected crop yield, and 
rcost(ic,it,irun) = real variable production cost.

Expected yield is based on trend-line regressions:

(1b) ey(ic,it,irun) = [cint(ic) + by(ic)*time(it)]

where:
cint(ic) and by(ic) are estimated coefficients.

In the policy run, expected yield is adjusted for exogenously specified percentage yield changes (“dyld”):

(1c) ey(ic,it,irun) = [cint(ic) + by(ic)*time(it)]*(1.0 + dyld(ic,it)/100.)

Changes in real variable costs of production can also be exogenously specified for the policy
simulation run.  Thus, yield and cost changes directly impact acreage planted through equation (1), and
indirectly impact acreage planted because of the resulting impact on prices in equation (1a) and thus in
equation (1).

Given signs and magnitudes of estimated coefficients in equation (1), an increase in expected
returns of the icth crop will increase acreage planted of that crop, while an increase in expected returns of
other endogenous crops will decrease acreage of the  icth crop.   The estimated coefficient on lagged acreage
planted in equation (1) is positive and less than one in value for all crops, which means that acreage planted
is dynamically stable. The estimated coefficient on the set-aside acreage is negative and less than one in
absolute value for all crops except oats, which reflects acreage slippage in the ARP program.  Oats were
typically planted to set-aside acreage, thus the estimated coefficient on set-aside acreage is positive in the
oats equation, as expected.  Further comments will be made on the acreage diverted effects on planted
acreage after participation rate and acreage diverted equations, which are endogenous, are presented below.

Acreage Harvested Equations.  Acreage harvested depends primarily on acreage planted:

(2) acresh(ic,it,irun) = bch(ic) + baph(ic)*acresp(ic,it,irun) + byrh(ic)*time(it) +
bdvh(ic)*acrediv

where:
acresh(ic,it,irun) = the acreage harvested of the icth crop in the itth year and in

simulation “irun”,

and other variables are as defined previously.  

The estimated coefficient baph(ic) is positive and less than one, indicating that not all planted
acreage is harvested, as expected.  The coefficient  bdvh(ic) on the acreage diverted variable is non-zero for
oats only, in which case it is negative.  This adjusts oat acreage harvested for the complexity of oats being
planted (but not harvested) on ARP acreage.  A time-trend variable for corn and grain sorghum, but not
other crops shows how harvested acreage as a percentage of planted acreage has been increasing slightly
over time.
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Participation Rate in Farm Programs.  Participation rates in the annual set-aside programs under
the 1985 FSA and the 1990 FACTA were endogenized in the model with the set of equations:

(3) part(ic,it,irun) = bcp(ic) + brmp(ic)*rerntm(ic,it,irun) + brpp(ic)*rerntp(ic,it,irun) +
byr(ic)*time(ic) + bpart(ic)*part(ic,it-1,irun) + bedpp(ic)*redp(ic,it,irun)
+ bd83p(ic)*dumb83(it)

where:
part(ic,it,irun) = the participation rate in the farm program for the  icth crop in the itth year

and in simulation “irun”, 
rerntp(ic,it,irun)= real expected returns over variable costs based on the support (target)

price for that crop, 
redp(ic,it,irun) = real effective acreage diversion payment rate,

 and other variables are as defined previously.  

Estimated coefficients brpp(ic) are non-negative, indicating that an increase in expected returns
based on support price will increase participation, while estimated coefficients brmp(ic) are non-positive,
indicating that an increase in expected returns based on expected market price will decrease participation. 
Lagged participation rate in equation (3) shows strong dynamics with respect to farm program
participation.   

Acreage Diverted under Farm Programs.  Acreage diverted under annual set-aside (or ARP)
programs is modeled as:

(4) adiv(ic,it,irun) = bcd(ic) + bd83d(ic)*dumb83(it) + bedpd(ic)*redp(ic,it,irun) +
byrd(ic)*time(it) + bpsa(ic)*sa(ic,it,irun)*part(ic,it,irun)

where:
adiv(ic,it,irun) = acreage diverted under annual diversion programs for the  icth crop in the

itth year and in simulation “irun”, 
sa(ic,it,irun) = the set-aside rate specified by the Secretary of Agriculture under 1985

FSA and 1990 FACTA, 

and other variables are as defined previously.
     

Acreage slippage (with respect to historical set-aside) in farm programs is implicit in the model
specification, and results from the complex simultaneity of farm program variables in sets of equations (1),
(3), and (4).

Acreage in Cultivated Summer Fallow.  Acreage in cultivated summer fallow is modeled by the
equation:

(5)      afl(it,irun) = bcfl + bafl*afl(it-1,irun) + berfl*rerentnp(it,irun) + byrfl*time(it) +
bd83fl*dumb83(it)

where:
afl(it,irun) = acreage fallowed in year it in simulation run “irun”.  



Abt Associates Inc. December 20005-22

Although the acreage in cultivated summer fallow is highly inelastic, this equation shows that an
increase in expected returns based on expected market price results in a small decrease in acreage fallowed.

Demand Components

The crop demand component of AGSIM© is based on a set of demand equations for each crop for
utilization categories of (a) imports, (b) exports,(c) livestock feed, (d) food, fiber, ethanol production and
other domestic uses, (e) ending stocks, and (f) residual use.  Each demand component depends on current
market price for that commodity and, where relevant, prices of other commodities.  The model specification
of each utilization category follows.

Imports.  Imports of agricultural commodities are modeled by the set of equations:

(6)     qd(ic,it,irun,1)  = bim(1,ic) + bim(2,ic)*rp(ic,it,irun)*xrate(ic,it-1,irun)                              
+ bim(3,ic)*qd(ic,it-1,irun,1) + bim(4,ic)*time(it) +
bim(5,ic)*uspop(it,irun)

where: 
qd(ic,it,irun,1) = the quantity of crop ic imported in year it in simulation run

“irun”,
rp(ic,it,irun) = real market price, 
xrate(ic,it-1,irun) = the real trade-weighted exchange rate, 
uspop(it,irun) = the United States population, 

and bim(j,ic) are estimated coefficients.  Lagged imports in equation (6) reflects dynamic adjustments.

Exports.  Exports of agricultural commodities are modeled by the set of equations:

(7) qd(ic,it,irun,2) = bex(1,ic) + bex(2,ic)*rp(ic,it,irun)*xrate(ic,it-1,irun) + bex(3,ic)*
qd(ic,it-1,irun,2) + bex(4,ic)*time(it) + bex(5,ic)*wpop(it,irun)

where:
qd(ic,it,irun,2) = the quantity of crop ic exported in year it in simulation run “irun”, and 
wpop(it,irun) = world population.

Feed, Fiber and Crushing Use.  Domestic utilization of crops for feed, fiber or crushing
(depending on the crop) is modeled by the set of equations:

(8) qd(ic,it,irun,3) = bfd(1,ic) + 3jcbfdcross(ic,jc)*rp(jc,it,irun) + bfd(2,ic)*qd(ic,it-1,irun,3) +
bfd(3,ic)*time(it)

where:
qd(ic,it,irun,3) = utilization for feed, fiber or crushing.  

Note that cross-price effects are incorporated into this set of equations through the set of estimated
coefficients bfdcross(ic,jc).  Symmetry of cross-price effects, consistent with microeconomic theory, was
imposed on estimation so that bfdcross(ic,jc) = bfdcross(jc,ic) for ic … jc.  Own-price effects are all
negative, as expected.
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Domestic Food Use.  The set of equations to represent domestic food use is:

(9) qd(ic,it,irun,4) = bfo(1,ic) + bfo(2,ic)*rp(ic,it,irun)  + bfo(3,ic)*qd(ic,it-1,irun,4) +
bfo(4,ic)*time(it) + bfo(5,ic)*uspop(it,irun) + bfo(6,ic)*rdincome(it,irun)

 
where:

rdincome(it,irun)  =  real per-capita disposable income in the United States, 

and other variables are as defined previously.  In the case of peanuts, the real market price is replaced by
the fixed quota price that applies to all domestically consumed peanuts.  This quota price for peanuts
applies to the 1985 FSA, the 1990 FACTA, and continues with the 1996 FAIR Act.

Ending Stocks.  Ending stocks are viewed as another component of demand.  Although
commodities are often held to maintain pipeline inventories, commodities are also held for speculative
purposes.  Thus, stock levels respond strongly to prices, so the stock relationships were specified and
estimated as

(10) qd(ic,it,irun,5) = bst(1,ic) + bst(2,ic)*rp(ic,it,irun) + bst(3,ic)*qd(ic,it-1,irun,5) +
bst(4,ic)*time(it)

where qd(ic,it,irun,5) is ending stocks in year t.  

Residual Use.  For some crops (rice, peanuts, and cottonseed), supply and utilization data show a
residual category, which is modeled as,

(11) qd(ic,it,irun,6) =  brs(1,ic) + brs(2,ic)*rp(ic,it,irun) + brs(3,ic)*time(it)

where:
qd(ic,it,irun,6) = residual use.  

Although quantities in this residual use category are never used, the level of the residual does
respond negatively to the real price, and is thus viewed as another utilization (demand) category.

Market Clearing Identities

In supply and demand specification outlined above, supply generally depends on past prices, while
demand depends on current prices.  In simulating these econometrically estimated equations into the future,
simulated prices are solved by simultaneously solving the market clearing identities

(12) qs(ic,it,irun) +qd(ic,it-1,irun,5)    = qd(ic,it,irun,1) + qd(ic,it,irun,2) + qd(ic,it,irun,3) +
qd(ic,it,irun,4)  + qd(ic,it,irun,5) + qd(ic,it,irun,6)

where:
qs(ic,it,irun)  =  the quantity produced of crop ic in year it in simulation “irun”. 
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Production is defined to be qs(ic,it,irun) = acresh(ic,it,irun)*ey(ic,it,irun).  The left hand side of the
equal sign in (12) gives total supply (production plus beginning stocks), while the right-hand side of (12)
gives total utilization, including ending stocks.

In the simulation model this set of simultaneous equations are numerically solved to get the market
clearing prices in a given year.  This process is continued, considering the dynamics of the model,
indefinitely into the future.

Historical Observation Period

Many econometric relationships in the model were estimated with data for the 1975-1995 time
period.  However, where structural change was apparent, such as with stock holding behavior and
international trade, some of the early years were dropped from statistical analysis so that the simulation
model would better reflect the future.

Alternative Specifications Considered

Many different specifications of how farm programs influence crop acreage have been considered
in the evolution of AGSIM©, including: (a) acreage depends on support price, (b) acreage depends on the
maximum of expected market price and support price, (c) acreage depends on a weighted average of
support and expected market prices, with weights based on program and non-program acreage of the crop,
and (d) acreage depends on expected market price.  Models for expected market price have considered
complex distributed lags that go back several years in time, to a simple model that expected market price is
actual price the previous year.  Acreage equations have also been specified to depend on expected returns
of: (1) all competing individual crops with no parameter restrictions, (2) all competing individual crops
with full symmetry of cross-effects imposed on estimation, (3) major competing individual crops, and (4) a
weighted average of all expected returns for all other crops. Many different ways of incorporating
participation rates and acreage diverted into the model have also been considered.  Several alternative
functional forms (linear, log-linear, nonlinear share equations, asymptotic) have also been considered. 
Theoretical specifications considered have ranged from ad hoc models to very tightly specified and detailed
theoretical economic models based on complex assumptions.  The present model draws from economic
theory (e.g. symmetry of cross-price effects in demand and homogeneity of degree zero of all supply and
demand equations with respect to prices), but does not specify the model so tightly with untested
assumptions and functional forms that empirical data has almost no role in the resulting estimates.
Alternative estimation techniques, ranging from simultaneous equations techniques, to Zellner’s seemingly
unrelated regressions, to ordinary least squares regression have been used.  The current version of
AGSIM© reflects a degree of subjective judgement of what best reflects supply and demand of agricultural
commodities based on microeconomic theory, traditional statistical criteria, and substantive direct contact
with farmers and ranchers in most regions of the United States.

Baseline

The current version of AGSIM© is designed to estimate changes in the agricultural sector resulting
from pesticide or other policy.  Changes in economic variables are computed by comparing a policy
simulation of the model with a baseline simulation of the model.  For ex post (retrospective) evaluations,
the baseline reflects actual farm programs, prices, acreages, etc.  However, for ex ante evaluations,
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AGSIM© is calibrated to an external baseline. The calibration is done by comparing an internally
generated baseline to the external baseline and computing adjusted intercepts for all of the relevant demand
and supply relationships in AGSIM©. 

For the 1999 version of AGSIM© the externally specified year 2010 baseline is forecasted from
the 2007 baseline reported by USDA (1988b).  A few endogenous variables in AGSIM© were not included
in the USDA baseline.  In those cases, the 1997 FAPRI baseline was used (FAPRI, 1997).

It should be noted that the baseline is not especially critical to estimates of changes in the
agricultural sector, except for the case of price support policy, which is not relevant here.  That is,
sensitivity analyses with previous versions of AGSIM© have shown that estimates of changes in variables
are not very sensitive to baseline absolute values of variables.  Use of the USDA baseline to the extent
possible assures consistency with other governmental mandated agricultural policy analyses.

Regional Effects Sub-Model

AGSIM© subroutines are also available to combine AGSIM© output with production cost
information to estimate net farm income impacts for the policy scenario at the regional level (or farm,
representative farm, area or state level).  Required information for this type of evaluation includes for each
farm or area: (a) yield and cost changes (which often differ from the national yield and cost changes for the
policy scenario), (b) baseline production costs, and(c) acreages of each crop.  This information is combined
with price impacts estimated with AGSIM©, and regional supply elasticities from a prior version of
AGSIM© (or from other sources) to estimate net farm income changes for the farms or areas considered. 

The conceptual foundation for regional evaluation in this version of AGSIM© begins with a net
farm income formula,

(13)   Π ir ic ir ic ir
ic

A R= ∑ , ,

where:
(ir = net farm income in region ir, 
Aic,ir = acreage harvested of the icth crop in that region, and 
Ric,ir = per-acre net return in that region. 

Based on equation (13), it can be shown that the theoretically appropriate formula for computing
net farm income changes for different regional situations is:
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where:
ª represents a discrete change, 
ªZ represents the discrete policy change, 
ic and jc are crop indices, 

and other variables are as previously defined.  
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Equation (14) can be expressed in acreage elasticity (with respect to per-acre income) form,

(15)     
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where: 
,ic,ij,ir = elasticity of acreage of the icth crop in the irth region with respect to per-

acre income of the jcth crop in that region.  

The term ªRic,ij/ªZ in equations (14) and (15) can be further expanded to give

(16)   
∆

∆
∆ ∆ ∆

R

Z
P Y Y P Cic ir

ic ic ir ic ir ic ic ir
,

, , ,≅ + −

Formula (15) along with (16) can be empirically implemented to estimate the change in regional 
(or farm, representative farm, area or state level) farm income with the following information for each
region: (a) crop budgets, (b) the change in yield and cost associated with the policy in question, price
impacts estimated with AGSIM©, and externally specified (from an older version of AGSIM©, from
subjective estimates, or from the literature) elasticities. 

The first term on the right-hand side of (14) and (15) represents the change in net income resulting
from increased or decreased acreage, while the last term on the right-hand side of (14) and (15) represents
the change in net farm income on existing acreage of crops in the region.  Since acreage response is
generally inelastic, the last term on the right-hand side of (14) and (15) dominates the change in net farm
income in a region; thus, elasticities generally will not have a major impact on regional net farm income
changes estimated with the above approach.
 

AGSIM© Output

The major outputs from AGSIM© are changes in crop acreage, production, price, income, foreign
consumer benefits, domestic consumer benefits, and farm program costs.  The traditional method of
economic welfare analysis (which is based on the concept of economic surplus) of policy changes is used to
compute the sum of changes in producer surplus (net farm income) plus changes to all consumers (changes
in consumers surplus) plus any changes in farm program payments (zero under 1996 FAIR).  To avoid the
possibility of inappropriately comparing a baseline with a policy scenario that was actually based on
another baseline, a single run of AGSIM© produces both the baseline tables and the policy scenario tables,
then computes economic surplus and price changes based on these two runs of the model.

Output from each run of the model includes two sets of tables for each crop; one set of tables for
supply variables and another set of tables for supply and utilization variables.  Each table includes
historical statistics as well as simulations into the future.  These tables are constructed for the baseline and
the policy scenario.



Abt Associates Inc. December 20005-27

5.3 Consumer Cleaning Cost Savings

Particulate matter air pollution has been shown to result in dirtier clothes, which in turn results in
higher annual cleaning costs for consumers.  One benefit of reduced particulate matter, then, is the
consequent reduction in cleaning costs for consumers.  Several studies have provided estimates of the cost
to households of PM soiling.  The study that is cited by ESEERCO (1994) as one of the most sophisticated
and is relied upon by EPA in its 1988 Regulatory Impact Analysis for SO2 is Manuel et al. (1982).  Using
a household production function approach and household expenditure data from the 1972-73 Bureau of
Labor Statistics Consumer Expenditure Survey for over twenty cities in the United States, Manuel et al.
estimated the annual cost of cleaning per µg/m3 PM per household as $1.55 ($0.59 per person times 2.63
persons per household).  This estimate is low compared with others (e.g., estimates provided by Cummings
et al. (1985) and Watson and Jaksch (1982) are about eight times and five times greater, respectively).  The
ESEERCO report notes, however, that the Manuel estimate is probably downward biased because it does
not include the time cost of do-it-yourselfers. Estimating that these costs may comprise at least half the cost
of PM-related cleaning costs, they double the Manuel estimate to obtain a point estimate of $3.10 (reported
by ESEERCO in 1992 dollars as $2.70).

The Manuel et al. (1982) study measured particulate matter as TSP rather than PM10 or PM2.5.  If
a one µg/m3 increase in TSP causes $1.55 worth of cleaning expenses per household, the same unit dollar
value can be used for PM10 (or PM2.5) only if particle size doesn’t matter -- i.e., only if particles of all sizes
are equally soiling.  Suppose, for example, that PM10 is 75% of TSP and that all particles are equally
soiling.  Then 75% of the damage caused by a one µg/m3 increase in TSP is due to PM10.  This is
(0.75)($1.55) = $1.16.  However, this corresponds to a 0.75 µg/m3 increase in PM10.  A one µg/m3 increase
in PM10 would therefore yield a dollar soiling damage of $1.16/0.75 = $1.55.  

Suppose, however, that only PM10 matters.  Then the $1.55 underestimates the impact of a one
µg/m3 increase in PM10, because it corresponds to a less than one µg/m3 increase in PM10 (e.g., a 0.75
µg/m3 increase in PM10).  In this case, the correct unit value per unit of PM10 would be ($1.55)/0.75 =
$2.07.  If only PM10 matters, then either (1) the dollar value can be adjusted by dividing it by the
percentage of TSP that is PM10 and PM10 can be used in the soiling damage function, or (2) the dollar value
can be left unadjusted and TSP, rather than PM10, can be used in the soiling damage function.

Finally, it is possible that, while both PM10 and PM2.5 are components of TSP that cause consumer
cleaning costs, the remaining portion of TSP has a greater soiling capability than either the PM10 or PM2.5

component.  In this case, using either PM10 or PM2.5 air quality data with a household soiling function
based on TSP would yield overestimates of the PM10- or PM2.5-related consumer cleaning costs avoided by
reductions in concentration of these pollutants.

There is, however, insufficient information on the relative soiling capabilities of the different
components of TSP.  This analysis assumes that all components of TSP have an equivalent soiling
capacity.
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6 Results

This chapter provides estimates of the magnitude and value of changes in selected health and
welfare endpoints associated with HD Engine/Diesel Fuel -related changes in ambient ozone and PM
concentrations. The total dollar benefits associated with a given endpoint depend on how much the endpoint
will change (e.g., how many premature deaths will be avoided) and how much each unit of change is worth
(e.g., how much a premature death avoided is worth).

To place estimated incidence changes into context with predicted baseline incidence, Exhibit 6-1
displays the baseline incidence figures for those endpoints for which one can be calculated. Due to the
nature of the endpoints, baseline incidence can be calculated only for ozone- and PM-related health effects. 
In addition to baseline incidence, for each health effect, both the mean estimated incidence change and
corresponding percent change between post-control incidence reductions and the predicted incidence
baseline is presented.  Note that these baseline incidences include all incidences, not just those associated
with air pollution.

Exhibits 6-2 and 6-3 present the primary incidence and benefit estimates associated with the
primary scenario.  A 5th percentile, mean, and 95th percentile estimate for both incidence and benefits is
presented for each endpoint, as well as the simple mean benefit  (calculated by multiplying the mean
estimate of incidence by the corresponding mean valuation).  Total benefits are also displayed, calculated
by simply summing the simple mean of each endpoint.

Exhibit 6-4 displays alternative incidence and benefit calculations to those included in the primary
analysis.  Where possible, a 5th percentile, mean, and 95th percentile estimate for incidence and/or benefits
is presented for each alternative endpoint.  Exhibit 6-5 presents the aggregate uncertainty results (5th, mean,
and 95th percentiles) for PM- and ozone-related benefits, as well as for total benefits (PM + ozone).
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Exhibit 6-1  Baseline Percentages

2030 Control Scenario

Endpoint Reference Mean % of Baseline

PM-related Baseline Percentages

Ages 30+ Krewski et al. (2000) 8,292 0.31%

Chronic Bronchitis Pooled Analysis 5,461 0.80%

COPD  (ICD-9 codes 4490-492, 494-496) Samet et al. (2000a) 900 0.18%

Pneumonia (ICD-9 codes 480-487) Samet et al. (2000a) 1,106 0.13%

Asthma (ICD code 493) Sheppard et al. (1999) 881 0.18%

Cardiovascular (ICD-9 codes 390-429) Samet et al. (2000a) 2,667 0.08%

Asthma-related ER visits Schwartz et al. (1993) 2,064 0.24%

Acute Bronchitis Dockery et al. (1996) 17,590 1.62%

Upper Respiratory Symptoms Pope et al. (1991) 193,402 0.15%

Lower Respiratory Symptoms Schwartz et al. (1994) 192,899 1.13%

Asthma Attacks Whittemore and Korn (1980) 175,931 0.09%

Work Loss Days Ostro (1987) 1,539,396 0.30%

MRAD - Adjusted Ostro and Rothschild (1989) 7,990,406 0.47%

Ozone-related Baseline Percentages

Respiratory-Related Pooled Analysis 1,173 0.03%

Dyrhythmias Burnett et al. (1999) 312 0.04%

Asthma-Related ER Visits Pooled Analysis 283 0.03%

Asthma Attacks Whittemore and Korn (1980) 185,517 0.10%

MRAD (Adjusted for Asthma Attacks) Ostro and Rothschild (1989) 1,848,092 0.11%
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Exhibit 6-2  Estimated PM-Related Health and Welfare Benefits Associated with Air Quality Changes Resulting from the HD Engine/Diesel
Fuel  Rule 2030 Control Scenario

Endpoint Reference
Avoided Incidence (cases/year) Monetary Benefits (millions 1999$) Simple

Mean
5th %ile Mean 95th %ile 5th %ile Mean 95th %ile

Mortality

Ages 30+ Krewski et al. (2000) 4,829 8,292 11,698 $6,516 $48,129 $119,286 $48,245

4,829 8,292 11,698 $6,120 $45,207 $112,042 $45,316

Chronic Illness

Chronic Bronchitis Pooled Analysis 1,884 5,478 9,464 $173 $1,803 $5,937 $1,805

Hospitalization

COPD  (ICD-9 codes 4490-492, 494-496) Samet et al. (2000a) 164 900 1,607 $2 $11 $20 $11

Pneumonia (ICD-9 codes 480-487)  Samet et al. (2000a) 610 1,106 1,601 $9 $16 $24 $16

Asthma (ICD code 493) Sheppard et al. (1999) 385 881 1,402 $3 $6 $10 $6

Cardiovascular (ICD-9 codes 390-429) Samet et al. (2000a) 2,252 2,667 3,067 $41 $49 $56 $49

Asthma-related ER visits Schwartz et al. (1993) 864 2064 3213 $0.3 $0.6 $1.1 $0.6

Minor Illness

Acute Bronchitis Dockery et al. (1996) -88 17,590 35,900 $0.0 $1.0 $2.5 $1.0

Upper Respiratory Symptoms Pope et al. (1991) 65,290 193,402 325,371 $1.2 $4.9 $10.3 $4.7

Lower Respiratory Symptoms Schwartz et al. (1994) 88,308 192,899 295,784 $1 $3 $6 $3

Asthma Attacks Whittemore and Korn (1980) 60,984 175,931 291,914 – a – a – a – a

Work Loss Days Ostro (1987) 1,337,267 1,539,396 1,733,280 $155 $178 $200 $163

MRAD - Adjusted Ostro and Rothschild (1989) 6,806,718 7,990,406 9,104,836 $233 $391 $560 $387

Welfare Effects

Recreational Visibility Study Regions Only (CA, SW,
and SE)

Direct Economic Valuation -- $1,789 -- $1,789

Total Primary PM-related Benefits (3% discount rate) -- -- -- -- -- -- $52,488

Total Primary PM-related Benefits (7% discount rate) -- -- -- -- -- -- $49,559
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a Because of uncertainty surrounding the magnitude of the effect of ozone on asthma attacks, we do not value asthma attacks in the primary analysis. Instead, we assume that the
valuation of asthma attacks is an alternative calculation.

Exhibit 6-3  Estimated Ozone-Related Health and Welfare Benefits Associated with Air Quality Changes Resulting from the HD
Engine/Diesel Fuel  Rule 2030 Control Scenario

Endpoint Reference
Avoided Incidence (cases/year) Monetary Benefits (millions 1999$) Simple

Mean
5th %ile Mean 95th %ile 5th %ile Mean 95th %ile

Hospitalization

Respiratory-Related Pooled Analysis 205 1,173 2,085 $3 $17 $29 $17

Dyrhythmias Burnett et al. (1999) 6 312 619 $0 $4 $8 $4

Asthma-Related ER Visits Pooled Analysis 88 283 453 $0.03 $0.09 $0.15 $0.08

Minor Illness

Asthma Attacks Whittemore and Korn (1980) 70,352 185,517 305,807 – a – a –  a – a

MRAD (Adjusted for Asthma
Attacks)

Ostro and Rothschild (1989) 988,645 1,848,092 2,706,607 $41 $90 $151 $90

Welfare Effects

Decreased Worker Productivity Crocker and Horst (1981) and EPA
(1994)

Direct Economic Valuation -- $142 – $142

Agriculture Direct Economic Valuation -- $1,078 – $1,078

Total Primary Ozone-related Benefits $1,330

a Because of uncertainty surrounding the magnitude of the effect of ozone on asthma attacks, we do not value asthma attacks in the primary analysis.  Instead, we assume that the
valuation of asthma attacks is an alternative calculation.
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Exhibit 6-4  Alternative Benefit Calculations for the HD Engine/Diesel Fuel Rule 2030 Control Scenario

Endpoint Reference/Alternative Valuation
Avoided Incidence (cases/year) Monetary Benefits (millions 1999$) Simple

Mean5th %ile Mean 95th %ile 5th %ile Mean 95th %ile

PM-related Alternative Calculations

Life Years Lost, by age: Krewski et al. (2000)

     30-34 3,490 6,256 8,867 - - - -

     35-44 8,350 14,969 21,217 - - - -

     45-54 8,175 14,655 20,771 - - - -

     55-64 11,680 20,938 29,674 - - - -

     65-74 14,842 26,605 37,706 - - - -

     75-84 11,611 20,813 29,497 - - - -

     85+ 6,455 11,571 16,399 - - - -

Life years lost 3% discount rate - - - $3,480 $22,758 $52,486 $22,758

Life years lost 7% discount rate - - - $4,068 $26,554 $60,902 $26,554

Age-Adjusted Value of
Statistical Lives Lost

Jones-Lee et al. (1989)  3% discount rate - - - $14,673 $26,303 $37,278 $43,049

Jones-Lee et al. (1989)  7% discount rate - - - $13,782 $24,706 $35,014 $24,706

     Jones-Lee et al. (1993) 3% discount rate - - - $24,015 $43,049 $61,010 $43,049

Jones-Lee et al. (1993) 7% discount rate - - - $22,556 $40,435 $57,306 $40,435

Chronic Bronchitis Reversals 1,652 4,770 8,258 $47 $696 $2,394 $695

Hospital Admissions Moolgavkar et al. (1997)

COPD-related -138 335 829 -$2 $4 $10 $4

Pneumonia-related -165 265 696 -$2 $4 $10 $4

Recreational Visibility All U.S. Class I Areas Direct Economic Valuation - $2,486 - $2,486

Residential Visibility Eastern U.S. Direct Economic Valuation - $688 - $688

Residential Visibility Western U.S. Direct Economic Valuation - $500 - $500

Household Soiling Damage ESEERCO (1994) Direct Economic Valuation $145 $261 $472 $261

Ozone-related Alternative Calculations

Chronic Asthma McDonnell et al. (1999) 185 816 1,452 $5 $26 $47 $26
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Exhibit 6-5  Measures of Aggregate Uncertainty in the Benefits Analysis

Monetary Benefits (millions 1999$) a

Benefits Aggregation 5th %ile b Mean 95th %ile b

Total Ozone-Related Benefits $477 $1,444 $2,403

Total PM-Related Benefits $14,863 $69,247 $163,699

Total HD Engine/Diesel Fuel  Rule Primary Analysis Benefits
(Ozone + PM)

$16,176 $70,691 $165,184

a Measures of aggregate uncertainty also include an adjustment to account for growth in income from 1999 to 2030.  See
Table VII-12 in the Regurlatory Impact Analysis for the final HD Engine/Diesel Fuel rule for the adjustment factors
used.  

b Our calculations of the  5th and 95th percentile estimates include the value of asthma attacks; the effect is small.  We excluded this
from the mean estimates.
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Appendix A:  Results for Supplementary Calculations and Sensitivity Analyses

Exhibit A-1  Supplemental Benefit Estimates for the 2030 Control Scenario

Avoided Incidence (cases/year) Monetary Benefits (millions 1999$)

Endpoint Reference Pollutant 5th %ile Mean 95th %ile 5th %ile Mean 95th %ile

Premature Mortality (short-term) Schwartz et al. (1996) PM 2,217 2,588 2,961 $2,238 $14,826 $34,278

Premature Mortality (short-term) Pooled analysis Ozone 13 472 987 $14 $2,646 $7,808

Premature Mortality (infant population) Woodruff et al. (1997) PM 17 34 51 $26 $199 $505

Shortness of breath PM 12,009 38,961 66,504 $0.0 $0.3 $0.6

Any of 19 Acute Respiratory Symptoms Krupnick et al. (1990) PM 4,177,871 24,556,892 45,842,008 $65 $606 $1,538

Any of 19 Acute Respiratory Symptoms Krupnick et al. (1990) Ozone 809,687 5,883,786 10,696,309 $14 $115 $277

Moderate or Worse Asthma Ostro et al. (1991) PM 27,731 182,500 328,015 $1 $8 $17

Exhibit A-2  Sensitivity Analysis Results for the 2030 Control Scenario

Mortality Lag Reference/Alternative Valuation
Avoided Incidence (cases/year) Monetary Benefits (millions 1997$)

5th %ile Mean 95th %ile 5th %ile Mean 95th %ile

     No Lag - 8,292 - $50,747 $50,747 $50,747

     5 Year 25%, 25%, 17%, 17%, 16% - 8,292 - $48,245 $46,727 $45,316

     8 Year Incidence Occurs 8th Year - 8,292 - $41,262 $36,065 $31,603

     15 Year Incidence Occurs 15th Year - 8,292 - $33,550 $25,631 $19,681

     15 Year Incidence Skewed Early - 8,292 - $47,237 $45,288 $43,586

     15 Year Incidence Skewed Late - 8,292 - $36,394 $29,492 $24,117



A-2Abt Associates Inc. December 1999

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

0 5 10 15 20 25 30 35 40 45

Assumed Effect Threshold (Annual Mean PM2.5 (ug/m3)

A
vo

id
ed

 I
nc

id
en

ce
 (

20
30

)

Exhibit A-3  Sensitivity Analysis: Effect of Thresholds on Estimated PM-Related Mortality Based on Krewski et al. (2000) - Mean, All-
Cause
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Exhibit A-4  Alternative Mortality Calculations

Age Group Statistic Mortality Reference
Mortality Incidence  (cases/year)  Monetary Benefits (million $ 1999)

5th %ile Mean 95th %ile 5th %ile Mean 95th %ile

Age 30+ Median Non-Accidental Pope et al. (1995) 5,905 9,418 13,010 $7,863 $55,274 $136,695

Age 30+ Median All-Cause Pope et al. (1995) 5,962 9,906 13,635 $8,639 $58,102 $139,341

Age 30+ Median Non-Accidental Krewski et al. (2000) 4,447 7,873 11,345 $6,272 $45,970 $114,045

Age 30+ Mean Non-Accidental Krewski et al. (2000) 4,606 7,910 11,158 $6,380 $45,934 $113,041

Age 30+ Median All-Cause Krewski et al. (2000) - Random
Effects, Independent Cities

8,906 16,014 23,616 $12,560 $93,944 $235,287

Age 30+ Median All-Cause Krewski et al. (2000) - Random
Effects, Regional Adjustment

499 9,360 18,212 $1,410 $53,928 $153,906

Age 25+ Mean Non-Accidental Dockery et al. (1993) 9,124 21,503 33,252 $15,118 $124,064 $314,567

Mean All-Cause Dockery et al. (1993) 9,621 22,602 35,064 $15,712 $131,549 $330,979

Age 25+ Mean Non-Accidental Krewski et al. (2000) 11,803 23,079 34,993 $19,547 $135,373 $333,275

Age 25+ Mean All-Cause Krewski et al. (2000) 12,446 24,243 36,900 $18,895 $139,614 $348,525



A-4Abt Associates Inc.

Exhibit A-5  Underlying Estimates and Weights for Pooled Estimate of PM-Related Chronic
Bronchitis Studies

Study
Ages 

Affected
Study

Weights mean Std. Dev.

Abbey  et al. (1995b): PM2.5 >26 0.23 6,331 3,230

Schwartz (1993): PM2.5 >29 0.77 5,105 1,782

Schwartz (1993): coarse PM10 >29 1.00 100 35

Pooled estimate of chronic bronchitis 5,478 2,314

Exhibit A-6  Underlying Estimates and Weights for Pooled Estimate of Ozone-Related Respiratory
Hospital Admissions

Study
Ages 

affected
Study

weights mean Std. Dev.

Burnett et al. (1997), Toronto all ages 0.01 6,996 1,484

Burnett et al. (1999), Toronto all ages 0.01 1,737 3,09

Thurston et al. (1994), Toronto all ages 0.01 1,151 6,64

Moolgavkar et al. (1997), Twin Cities >64 0.32 1,102 305

Schwartz (1994a), Twin Cities >64 0.28 552 328

Schwartz (1994b), Detroit >64 0.26 1,601 341

Schwartz (1996), New Haven >64 0.08 1,149 604

Schwartz (1996), Tacoma >64 0.02 3,126 1,106

Pooled estimate of respiratory
hospital admissions

1,173 838

Exhibit A-7  Underlying Estimates and Weights for Pooled Estimate of Ozone-Related Asthma ER
Visits

Study
Ages 

Affected
Study

Weights mean Std. Dev.

Cody et al. (1992) >26 0.49 393 138

Weisel et al. (1995) >26 0.49 858 139

Stieb et al. (1996) >29 0.02 2,879 1,471

Pooled estimate of asthma ER 283 200



52The published paper has an incorrect coefficient and standard error; updated estimates were obtained from the author.
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Appendix B:  Ozone Concentration-response Functions

Note that )O3 is defined as (O3, baseline - O3, control), and that the change is defined as: (incidencecontrol -
incidencebaseline).

B.1 Short-term Ozone-related Mortality (Four U.s. Studies)

Four studies were used to estimate the possible relationship between ozone and increased mortality.

B.1.1 Short-Term Mortality (U.S.) (Ito and Thurston, 1996)

Ito and Thurston (1996) examined the relationship between daily non-accidental mortality and air
pollution levels in Cook County, Illinois from 1985 to 1990.  They examined daily levels of ozone, PM10,
SO2, and CO, and found a significant relationship for ozone and PM10 with both pollutants in the model; no
significant effects were found for SO2 and CO.  The ozone coefficient is estimated from a model with PM10. 

The C-R function to estimate the change in short-term mortality associated with a change in ozone
is:

where:
y0 = county-level daily incidence for non-accidental deaths per person of any age
$ = ozone coefficient = 0.000634 (Ito, 1998)52

)O3 = change in daily one-hour maximum ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ = 0.000251 (Ito, 1998).

Incidence Rate. To estimate county-specific baseline mortality incidence, this analysis used the average
annual county mortality rate from 1994 through 1996 (U.S. Centers for Disease Control, 1999).  

B.1.2 Short-Term Mortality (U.S.) (Kinney et al., 1995)

Kinney et al. (1995) examined the relationship between daily non-accidental mortality and air
pollution levels in Los Angeles, California from 1985 to 1990.  They examined ozone, PM10, and CO, and
found a significant relationship for each pollutant in single pollutant models.  The effect for ozone dropped
to zero with the inclusion of PM10 in the model, while the effect for CO and PM10 appeared independent of
each other and were of a similar magnitude.
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The C-R function to estimate the change in short-term mortality associated with a change in ozone
is:

where:
y0 = county-level daily incidence for non-accidental deaths per person of any age
$ = ozone coefficient =  0
)O3 = change in daily 1-hour maximum ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ =  0.000214.

Incidence Rate. To estimate county-specific baseline mortality incidence, this analysis used the average
annual county mortality rate from 1994 through 1996 (U.S. Centers for Disease Control, 1999).  

Coefficient Estimate ($$).  In a model with PM10, the ozone coefficient ($) for non-accidental mortality is
estimated from the relative risk (1.00) associated with a change in daily one-hour maximum ozone of 143
ppb (Kinney et al., 1995, Table 2 and Figure 3):

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Kinney et al., 1995, Table 2 and Figure 3):

B.1.3 Short-Term Mortality (U.S.) (Moolgavkar et al., 1995)

Moolgavkar et al. (1995) examined the relationship between daily non-accidental mortality and air
pollution levels in Philadelphia, Pennsylvania from 1973 to 1988.  They examined ozone, TSP, and SO2  in
a three-pollutant model, and found a significant relationship for ozone and SO2; TSP was not significant.
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The C-R function to estimate the change in short-term mortality associated with a change in ozone
is:

where:
y0 = county-level daily incidence for non-accidental deaths per person of any age
$ = ozone coefficient = 0.000611
)O3 = change in daily average ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ = 0.000216

Incidence Rate. To estimate county-specific baseline mortality incidence, this analysis used the average
annual county mortality rate from 1994 through 1996 (U.S. Centers for Disease Control, 1999).  

Coefficient Estimate ($$).  Based on a model with TSP and SO2, the coefficient ($) for non-accidental
mortality is estimated from the relative risk (1.063) associated with a change in daily average ozone of 100
ppb (Moolgavkar et al., 1995, Table 5):

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk  (Moolgavkar et al., 1995, Table 5):

B.1.4 Short-Term Mortality (U.S.) (Samet et al., 1997)

Samet et al. (1997) examined the relationship between daily non-accidental mortality and air
pollution levels in Philadelphia, Pennsylvania from 1974 to 1988.  They examined  ozone, TSP, SO2, NO2,
and CO  in a five-pollutant model, and found a significant relationship for each pollutant.
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The C-R function to estimate the change in short-term mortality associated with a change in ozone
is:

where:
y0 = county-level daily incidence for non-accidental deaths per person of any age
$ = ozone coefficient = 0.000936
)O3 = change in daily average ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ =  0.000312

Incidence Rate. To estimate county-specific baseline mortality incidence, this analysis used the average
annual county mortality rate from 1994 through 1996 (U.S. Centers for Disease Control, 1999).  

Coefficient Estimate ($$).  In a model with TSP, SO2, NO2, and CO, the ozone coefficient ($) for non-
accidental mortality is estimated from the relative risk (1.0191) associated with a change in the two-day
average ozone level of 20.219 ppb (Samet et al., 1997, Table 9):

Standard Error (FF$$).  The standard error (F$) was calculated using the reported t-value (t=3) (Samet et
al., 1997, Table 9):

B.2 Chronic Illness

In recent years, a number of studies have investigated the possible link between ozone and the
development of chronic illness.  Abbey et al. (1991; 1993) reported a significant link between ozone and the
development of asthma, and Portney and Mullahy (1990) found ozone linked to sinusitis and hay fever.  A
review of research data by EPA (1996b, p. 9-35) concluded that prolonged ozone exposure causes
structural changes in several regions of the respiratory tract, and the available epidemiological studies are
suggestive of a link between chronic health effects in humans and long-term ozone exposure.  Most
recently, a study by McDonnell et al. (1999) carefully measured ozone exposure for Seventh Day
Adventists living in California.  

B.2.1 Asthma Adult Onset (McDonnell et al., 1999)

The McDonnell et al. (1999) study used the same cohort of Seventh-Day Adventists as Abbey et
al. (1991; 1993), and examined the association between air pollution and the onset of asthma in adults



53The eight-hour ozone concentration is defined as 9:00 A.M. to 4:59 P.M.  The study used the 1973-1992 mean 8-hour
average ambient ozone concentration (McDonnell et al., 1999, p. 113).

54The population weighted average incidence of asthma in males 27 and older is 3.34 percent.  Population data from U.S.
Census Bureau (1997, Table 14); asthma prevalence for males from Collins (1997, Table 9).
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between 1977 and 1992.  Males who did not report doctor-diagnosed asthma in 1977, but reported it in
1987 or 1992, had significantly higher ozone exposures, controlling for other covariates; no significant
effect was found between ozone exposure and asthma in females.  No significant effect was reported for
females or males due to exposure to PM, NO2, SO2, or SO4.

The C-R function to estimate the change in chronic asthma is:

where:
y0 = annual asthma incidence rate per person (McDonnell et al., 1999, Table 4)  = 0.00219
$ = estimated O3 coefficient (McDonnell et al., 1999, Table 5) = 0.0277
)O3 = change in annual average 8-hour O3 concentration53

pop = population of non-asthmatic males ages 27 and older54 = 96.66% of males 27+
F$ = standard error of $ (McDonnell et al., 1999, Table 5) = 0.0135

Incidence Rate. The annual incidence rate is derived by taking the number of new cases (32), dividing by
the number of individuals in the sample (972), as reported by (McDonnell et al., 1999, Table 4), and then
dividing by the 15 years in the sample.

B.3 Hospital Admissions

We estimate the impact of ozone on hospital admissions using a number of epidemiological studies. 
Most of the studies focus on the link between ozone and respiratory-related hospital admissions.

B.3.1 Hospital Admissions for Asthma (Burnett et al., 1999, Toronto)

Burnett et al. (1999) examined the relationship between air pollution and hospital admissions for
individuals of all ages in Toronto, Canada from1980 to 1994.  They estimated multiple pollutant models,
where pollutants for best fitting model were chosen using stepwise regression based on AIC criterion. 
Asthma admissions were linked to O3, CO, and PM2.5-10.  This C-R function is based on the results of this
three-pollutant model.

The C-R function to estimate the change in hospital admissions for asthma associated with daily
changes in ozone is:
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where:
y0 = daily hospital admission rate for asthma per person = 4.75 E-6
$ = ozone coefficient = 0.00250
)O3 = change in daily average ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ =  0.000718

Incidence Rate.   Hospital admissions for obstructive lung disease (ICD-9 codes: 490-492, 496) are based
on first-listed discharge figures for the latest available year, 1994.  The rate equals the annual number of
first-listed diagnoses for discharges (0.547 million) divided by the 1994 population (260.372 million), and
then divided by 365 days in the year.  The discharge figures are from Graves and Gillum (1997, Table 1),
and the population data are from U.S. Bureau of the Census (1997, Table 14).

Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 4.99 percent increase in admissions
due to a ozone change of 19.5 ppb (Burnett et al., 1999, Tables 1 and 5).  This translates to a relative risk
of 1.0499.  The coefficient is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated using the t-value (t=3.48) (Burnett, 1999):

B.3.2 Hospital Admissions for Obstructive Lung Disease (Burnett et al., 1999, Toronto)

Burnett et al. (1999) examined the relationship between air pollution and hospital admissions for
individuals of all ages in Toronto, Canada from1980 to 1994.  They estimated multiple pollutant models,
where pollutants for the best fitting model were chosen using stepwise regression based on AIC criterion. 
Admissions for chronic obstructive pulmonary disease (COPD) were linked to O3 and PM2.5-10.  This C-R
function is based on the results of this two-pollutant model.

The C-R function to estimate the change in hospital admissions for obstructive lung disease
associated with daily changes in ozone is:

where:
y0 = daily hospital admission rate for obstructive lung disease per person = 5.76 E-6
$ = ozone coefficient = 0.00303
)O3 = change in daily average ozone concentration (ppb)
pop = population of all ages
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F$ = standard error of $ = 0.00110

Incidence Rate.   Hospital admissions for respiratory infection (ICD-9 codes: 464, 466, 480-487, 494) are
based on first-listed discharge figures for the latest available year, 1994.  The rate equals the annual
number of first-listed diagnoses for discharges (1.485 million) divided by the 1994 population (260.372
million), and then divided by 365 days in the year.  The discharge figures are from Graves and Gillum
(1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).

Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 6.08 percent increase in admissions
due to a ozone change of 19.5 ppb (Burnett et al., 1999, Tables 1 and 5).  This translates to a relative risk
of 1.0608.  The coefficient is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated using the t-value (t=2.74) (Burnett, 1999):

B.3.3 Hospital Admissions for Respiratory Infection (Burnett et al., 1999, Toronto)

Burnett et al. (1999) examined the relationship between air pollution and hospital admissions for
individuals of all ages in Toronto, Canada from 1980 to 1994.  They estimated multiple pollutant models,
where pollutants for the best fitting model were chosen using stepwise regression based on AIC criterion.  
Respiratory infection admissions were linked to O3, NO2, and PM2.5.  This C-R function is based on the
results from this three-pollutant model.

The C-R function to estimate the change in hospital admissions for respiratory infection associated
with daily changes in ozone is:

where:
y0 = daily hospital admission rate for respiratory infection per person = 1.56 E-5
$ = ozone coefficient = 0.00198
)O3 = change in daily average ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ = 0.000520

Incidence Rate.   Hospital admissions for respiratory infections (ICD-9 codes: 464-466, 480-486, 490-
494, 496) are based on first-listed discharge figures for the latest available year, 1994.  The rate equals the
annual number of first-listed diagnoses for discharges (2.452 million) divided by the 1994 population



55 Burnett et al. (1997, Table 2 and p. 614) reported using the  daytime average ozone level from 8 A.M. to 8 P.M.
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(260.372 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).

Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 3.93 percent increase in admissions
due to a ozone change of 19.5 ppb (Burnett et al., 1999, Tables 1 and 5).  This translates to a relative risk
of 1.0393.  The coefficient is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated using the t-value (t=3.80) (Burnett, 1999):

B.3.4 Hospital Admissions for All Respiratory (Burnett et al., 1997, Toronto)

Burnett et al. (1997) examined the relationship between air pollution and hospital admissions for
individuals of all ages in Toronto, Canada during the summers of 1992-1994.  All respiratory admissions
were linked to coefficient of haze (COH) and O3; other PM measures were less strongly linked.  In two
pollutant models, they found that CO, NO2, and SO2 were not significant, controlling for COH.  They
found that O3 was still significant, controlling for COH.  This C-R function is based on the results from the
four-pollutant model (PM2.5-10, O3, NO2, and SO2) to estimate all respiratory incidence.

The C-R function to estimate the change in all respiratory hospital admissions associated with
daily changes in ozone is:

where:
y0 = daily hospital admission rate for all respiratory admissions per person = 2.58  E-5
$ = O3 coefficient = 0.00498
)O3 = change in daily 12-hour average O3 concentration (ppb)55

pop = population of all ages
F$ = standard error of $ = 0.00106

Incidence Rate.  Hospital admissions for all respiratory causes (ICD-9 codes: 464-466, 480-486, 490-494,
496) are based on first-listed discharge figures for the latest available year, 1994.  The rate equals the
annual number of first-listed diagnoses for discharges (2.452 million) divided by the 1994 population
(260.372 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).



56The 812 Retrospective analysis (U.S. EPA, 1997b, Table D-7) used an ozone coefficient based on a model with PM10.
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Coefficient Estimate ($$).  The estimated coefficient ($) is based on a relative risk of 1.059 due to a change
of 11.50 ppb in the daily average for O3 (Burnett et al., 1997, Tables 2 and 6).  The coefficient is
calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated using the t-value (t=4.71) (Burnett et al.,
1997, Table 6)

B.3.5 Hospital Admissions for All Respiratory (Thurston et al., 1994, Toronto)

Thurston et al. (1994) examined the relationship between air pollution and hospital admissions for
individuals of all ages in Toronto, Canada, for six weeks in July and August 1986-1988. In single-pollutant
models, ozone and various measures of PM were linked to all respiratory admissions.  In two-pollutant
models, ozone was still significant, but measures of PM were often not significant; only H+ was significant. 
This C-R function is based on the results of a two-pollutant model (PM2.5 and ozone).

The C-R function to estimate the change in all respiratory hospital admissions associated with
daily changes in ozone is:

where:
$ = ozone coefficient = 1.68 E-8
)O3 = change in daily one-hour maximum ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ = 9.71 E-9 .

Coefficient Estimate ($$).  Based on a linear model with PM2.5, the one-hour maximum ozone coefficient
comes from an estimated coefficient of 0.0404, which estimates admissions per ppb of ozone (Thurston et
al., 1994, Table 3).56  The population of Toronto was estimated to be 2.4 million (U.S. EPA, 1997b, Table
D-7).  We estimated a coefficient estimating admissions per person per ppb of ozone as follows:

Standard Error (FF$$).  The standard error (F$) was calculated in a similar fashion (Thurston et al., 1994,
Table 3):
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B.3.6 Hospital Admissions for Pneumonia (Moolgavkar et al., 1997, Minneapolis)

Moolgavkar et al. (1997) examined the relationship between air pollution and hospital admissions
for individuals 65 and older in Minneapolis-St. Paul, Minnesota, from January 1986 to December 1991.  In
a four pollutant model examining pneumonia admissions in Minneapolis, ozone was significant, while NO2,
SO2, and PM10 were not significant.  This C-R function is based on the results from the four-pollutant
model to estimate pneumonia incidence.

The C-R function to estimate the change in hospital admissions for pneumonia associated with
daily changes in ozone is:

where:
y0 = daily hospital admission rate for pneumonia per person = 5.30 E-5
$ = O3 coefficient = 0.00370
)O3 = change in daily average O3 concentration (ppb)
pop = population of ages 65 and older
F$ = standard error of $ = 0.00103

Incidence Rate.  Hospital admissions for pneumonia (ICD-9 codes: 480-487) are based on first-listed
discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (0.642 million) divided by the 1994 population of individuals 65 years and older
(33.162 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).

Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 5.7 percent increase in admissions
due to a O3 change of 15 ppb (Moolgavkar et al., 1997, Table 4 and p.  366); the model with a 130 df
smoother was reported to be optimal (p.  368).  This translates to a relative risk of 1.057.  The coefficient
is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Moolgavkar et al., 1997, Table 4):
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B.3.7 Hospital Admissions for COPD (Moolgavkar et al., 1997, Minneapolis)

Moolgavkar et al. (1997) examined the relationship between air pollution and hospital admissions
for individuals 65 and older in Minneapolis-St. Paul, Minnesota, from January 1986 to December 1991. 
No significant effect found for any pollutant; the effect for ozone was marginally significant.  This C-R
function is based on the results from a three-pollutant model (O3, CO, PM10)  to estimate COPD incidence.

The C-R function to estimate the change in hospital admissions for COPD associated with daily
changes in ozone is:

where:
y0 = daily hospital admission rate for COPD per person = 3.75 E-5
$ = O3 coefficient = 0.00274
)O3 = change in daily average O3 concentration (ppb)
pop = population of ages 65 and older
F$ = standard error of $ = 0.00170

Incidence Rate.  Hospital admissions for COPD (ICD-9 codes: 490-496) are based on first-listed
discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (0.454 million) divided by the 1994 population of individuals 65 years and older
(33.162 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).

Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 4.2 percent increase in admissions
due to a O3 change of 15 ppb (Moolgavkar et al., 1997, Table 4 and p.  366); the model with a 100 df
smoother was reported to be optimal (p.  368).  This translates to a relative risk of 1.042.  The coefficient
is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Moolgavkar et al., 1997, Table 4):
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B.3.8 Hospital Admissions for Pneumonia (Schwartz, 1994a, Minneapolis)

Schwartz (1994a) examined the relationship between air pollution and hospital admissions for
individuals 65 and older in Minneapolis-St. Paul, Minnesota, from January 1986 to December 1989.  In a
two-pollutant model, Schwartz found PM10 significantly related to pneumonia; ozone was weakly linked to
pneumonia.  This C-R function is based on the results of the two-pollutant model (PM10, O3) to estimate
pneumonia incidence.

The C-R function to estimate the change in hospital admissions for pneumonia associated with
daily changes in ozone is:

where:
y0 = daily hospital admission rate for pneumonia per person = 5.30 E-5
$ = O3 coefficient = 0.00280
)O3 = change in daily average O3 concentration (ppb)
pop = population of ages 65 and older
F$ = standard error of $ = 0.00172

Incidence Rate.  Hospital admissions for pneumonia (ICD-9 codes: 480-487) are based on first-listed
discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (0.642 million) divided by the 1994 population of individuals 65 years and older
(33.162 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).

Coefficient Estimate ($$).  Based on a model with ozone, the coefficient ($) is estimated from the relative
risk (1.15) associated with a 50 ppb change in the daily average ozone level (Schwartz, 1994a, Table 4 and
p.  369):
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Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Schwartz, 1994a, Table 4):

B.3.9 Hospital Admissions for Pneumonia (Schwartz, 1994b, Detroit)

Schwartz (1994b) examined the relationship between air pollution and hospital admissions for
individuals 65 and older in Detroit, Michigan, from January 1986 to December 1989.  In a two-pollutant
model, Schwartz found both PM10 and ozone significantly linked to pneumonia and COPD; no significant
link to asthma admissions was found for either pollutant.  We use the results of this two-pollutant model.

The C-R function to estimate the change in hospital admissions for pneumonia associated with
daily changes in ozone is:

where:
y0 = daily hospital admission rate for pneumonia per person = 5.18 E-5
$ = O3 coefficient (Schwartz, 1994b, Table 4) = 0.00521
)O3 = change in daily average O3 concentration (ppb)
pop = population of ages 65 and older
F$ = standard error of $ (Schwartz, 1994b, Table 4) = 0.0013

Incidence Rate.   Hospital admissions for pneumonia (ICD-9 codes: 480-486) are based on first-listed
discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (0.627 million) divided by the 1994 population of individuals 65 years and older
(33.162 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).

B.3.10 Hospital Admissions for COPD (Schwartz, 1994b, Detroit)

Schwartz (1994b) examined the relationship between air pollution and hospital admissions for
individuals 65 and older in Detroit, Michigan, from January 1986 to December 1989.  In a two-pollutant
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model, Schwartz found both PM10 and ozone significantly linked to pneumonia and COPD; no significant
link to asthma admissions was found for either pollutant.  We use the results of this two-pollutant model.

The C-R function to estimate the change in hospital admissions for COPD associated with daily
changes in O3 is:

where:
y0 = daily hospital admission rate for COPD per person = 3.05 E-5
$ = O3 coefficient (Schwartz, 1994b, Table 4) = 0.00549
)O3 = change in daily average O3 concentration
pop = population of ages 65 and older
F$ = standard error of $ (Schwartz, 1994b, Table 4) = 0.00205

Incidence Rate.   Hospital admissions for COPD (ICD-9 codes: 491-492, 494-496) are based on first-
listed discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (0.369 million) divided by the 1994 population of individuals 65 years and older
(33.162 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).

B.3.11 Hospital Admissions for All Respiratory (Schwartz, 1995, New Haven)

Schwartz (1996) examined the relationship between air pollution and hospital admissions for
individuals 65 and older in New Haven, Connecticut, from January 1988 to December 1990.  In single-
pollutant models, PM10 and SO2 were significant, while ozone was marginally significant.  In two-pollutant
models, ozone was significant in one of two models, and had stable coefficient estimates; PM10 was
significant in two of two models, but had less stable estimates.  SO2  was significant in one of four models. 
The C-R function in this analysis is based on a two-pollutant model with ozone and PM10.

The C-R function to estimate the change in all respiratory hospital admissions associated with
daily changes in ozone is:

where:
y0 = daily hospital admissions for all respiratory conditions per person 65 and older = 1.187 E-4
$ = ozone coefficient = 0.00265
)O3 = change in daily average ozone concentration (ppb)
pop = population of ages 65 and older
F$ = standard error of $ = 0.00140

Incidence Rate.  All respiratory hospital admissions (ICD-9 codes: 460-519) are based on first-listed
discharge figures for the latest available year, 1994.  The rate equals the national annual number of first-
listed diagnoses for discharges (1.437 million) divided by the 1994 U.S. population of individuals 65 years



57A conversion of 1.96 µg/m3 per ppb is used, based on a density of ozone of 1.96 grams per liter (at 25 degrees Celsius). 
Since there are 1000 liters in a cubic meter and a million µg in a gram, this density means that there are 1.96 billion µg of ozone in a
cubic meter of ozone.  If a cubic meter has just one ppb of ozone, then this means that this particular cubic meter has 1.96 µg of ozone
(i.e., one ppb = 1.96 µg/m3).
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and older (33.162 million), and then divided by 365 days in the year.  The discharge figures are from
Graves and Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997,
Table 14).

Coefficient Estimate ($$).  Based on a model with PM10, the coefficient ($) is estimated from the relative
risk (1.07) associated with a change in ozone exposure of 50 µg/m3 (Schwartz, 1995, Table 3 and p. 
535):57

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Schwartz, 1995, Table 3). 

B.3.12 Hospital Admissions for All Respiratory (Schwartz, 1995, Tacoma)

Schwartz (1996) examined the relationship between air pollution and hospital admissions for
individuals 65 and older in Tacoma, Washington, from January 1988 to December 1990.  In single-
pollutant models, PM10, ozone, and SO2 were all significant.  In two-pollutant models, ozone was
significant in two of two models, and had stable coefficient estimates; PM10 was significant in one of two
models, but had less stable estimates; SO2  was not significant in either of the two-pollutant models.  The
C-R function in this analysis is based on a two-pollutant model with ozone and PM10.

The C-R function to estimate the change in hospital admissions for all-respiratory causes
associated with daily changes in ozone is:



58A conversion of 1.96 µg/m3 per ppb is used, based on a density of ozone of 1.96 grams per liter (at 25 degrees Celsius). 
Since there are 1000 liters in a cubic meter and a million µg in a gram, this density means that there are 1.96 billion µg of ozone in a
cubic meter of ozone.  If a cubic meter has just one ppb of ozone, then this means that this particular cubic meter has 1.96 µg of ozone
(i.e., one ppb = 1.96 µg/m3).
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where:
y0 = daily hospital admissions for all respiratory conditions per person 65 and older = 1.187 E-4
$ = ozone coefficient = 0.00715
)O3 = change in daily average ozone concentration (ppb)
pop = population of ages 65 and older
F$ = standard error of $ = 0.00257

Incidence Rate.  All respiratory hospital admissions (ICD-9 codes: 460-519) are based on first-listed
discharge figures for the latest available year, 1994.  The rate equals the national annual number of first-
listed diagnoses for discharges (1.437 million) divided by the 1994 U.S. population of individuals 65 years
and older (33.162 million), and then divided by 365 days in the year.  The discharge figures are from
Graves and Gillum (1997, Table 1), and the population data are from U.S. Bureau of the Census (1997,
Table 14).

Coefficient Estimate ($$).  Based on a model with PM10, the coefficient ($) is estimated from the relative
risk (1.20) associated with a change in ozone exposure of 50 µg/m3 (Schwartz, 1995, Table 6 and p. 
535):58

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk  (Schwartz, 1995, Table 6):



Abt Associates Inc. December 2000Abt Associates Inc. B-17

β = =
ln( . )

.
. .

10334

19 5
0 00168

σ β = =
0 00168

163
0 00103

.

.
. .

[ ]∆ ∆Dysrhythmias Admissions y e popO= − ⋅ − ⋅− ⋅
0

3 1( ) ,β

B.3.13 Hospital Admissions for Dysrhythmias (Burnett et al., 1999, Toronto)

Burnett et al. (1999) examined the relationship between air pollution and hospital admissions for
individuals of all ages in Toronto, Canada from1980 to 1994.  They estimated multiple pollutant models,
where pollutants for best fitting model were chosen using stepwise regression based on AIC criterion.  
Dysrhythmias admissions were linked to O3, CO, and PM2.5.  This C-R function is based on the results of
this three-pollutant model.

The C-R function to estimate the change in hospital admissions for dysrhythmias associated with
daily changes in ozone is:

where:
y0 = daily hospital admission rate for dysrhythmias per person = 6.46 E-6
$ = ozone coefficient = 0.00168
)O3 = change in daily average ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ = 0.00103

Incidence Rate.   Hospital admissions for dysrhthmias (ICD-9 code: 427) are based on first-listed
discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (0.614 million) divided by the 1994 population (260.372 million), and then
divided by 365 days in the year.  The discharge figures are from Graves and Gillum (1997, Table 1), and
the population data are from U.S. Bureau of the Census (1997, Table 14).

Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 3.34 percent increase in admissions
due to a ozone change of 19.5 ppb (Burnett et al., 1999, Tables 1 and 5).  This translates to a relative risk
of 1.0334.  The coefficient is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated using the t-value (t=1.63) (Burnett, 1999):

B.4 Emergency Room Visits

There is a wealth of epidemiological information on the relationship between air pollution and
hospital admissions for various respiratory and cardiovascular diseases; in addition, some studies have
examined the relationship between air pollution and ER visits.  Because most ER visits do not result in an
admission to the hospital -- the majority of people going to the ER are treated and return home -- we treat



59The population estimate is based on the 1990 population for the eight counties containing hospitals or in the central core
of the study.  Cody et al. (1992, Figure 1) presented a map of the study area; the counties are: Bergen, Essex, Hudson, Middlesex,
Morris, Passaic, Somerset, and Union.

60The coefficients in the study were based on the five-hour (10:00 am to 2:59 pm) ozone average in ppm; they have been
converted to ppb.
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hospital admissions and ER visits separately, taking account of the fraction of ER visits that do get
admitted to the hospital, as discussed below.

The only types of ER visits that have been explicitly linked to ozone in U.S. and Canadian
epidemiological studies are asthma visits.  However, it seems likely that ozone may be linked to other types
of respiratory-related ER visits.  

B.4.1 Emergency Room Visits for Asthma (Cody et al., 1992, Northern NJ)

Cody et al. (1992) examined the relationship between ER visits and air pollution for persons of all
ages in central and northern New Jersey, from May to August in 1988-1989.  In a two pollutant model,
ozone was linked to asthma visits, and no effect was seen for SO2.  PM10 considered in separate analysis,
because of limited (every sixth day) sampling; no significant effect was seen for PM10.

The C-R function to estimate the change in asthma ER visits associated with daily changes in
ozone is:

where:
$   = ozone coefficient (Cody et al., 1992, Table 6) = 0.0203
BasePop = baseline population in northern New Jersey59 = 4,436,976
)O3   = change in daily five-hour average ozone concentration (ppb)60

pop   = population of all ages
F$   = standard error of $ (Cody et al., 1992, Table 6) = 0.00717

Correction for Double Counting.  Smith et al. (1997, p. 789) reported that in 1987 there were 445,000
asthma admissions and 1.2 million asthma ER visits. Assuming that all asthma hospital admissions pass
through the ER room, then 37% of ER visits end up as hospital admissions.  This percentage is then
subtracted from the estimated change in asthma-related ER visits.

B.4.2 Emergency Room Visits for Asthma (Weisel et al., 1995, Northern NJ)

Weisel et al. (1995) examined the relationship between ER visits and air pollution for persons of
all ages in central and northern New Jersey, from May to August in 1986-1990.  A significant relationship
was reported for ozone.



61The population estimate is based on the 1990 population for the eight counties containing hospitals or in the central core
of the study.  Cody et al. (1992, Figure 1) presented a map of the study area; the counties are: Bergen, Essex, Hudson, Middlesex,
Morris, Passaic, Somerset, and Union.

62The coefficients in the study were based on the five-hour (10:00 am to 2:59 pm) ozone average in ppm; they have been
converted to ppb.
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The C-R function to estimate the change in asthma ER visits associated with daily changes in
ozone is:

where:
$   = ozone coefficient = 0.0443
BasePop = baseline population in northern New Jersey61 = 4,436,976
)O3   = change in daily five-hour average ozone concentration (ppb)62

pop   = population of all ages
F$    = standard error of $ = 0.00723

Correction for Double Counting.  Smith et al. (1997, p. 789) reported that in 1987 there were 445,000
asthma admissions and 1.2 million asthma ER visits. Assuming that all asthma hospital admissions pass
through the ER room, then 37% of ER visits end up as hospital admissions.  This percentage is then
subtracted from the estimated change in asthma-related ER visits.

Coefficient Estimate ($$).  The coefficient used in the C-R function is a weighted average of the
coefficients in Weisel et al. (1995, Table 2) using the inverse of the variance as the weight:

Standard Error (FF$$).  The standard error of the coefficient (F$) is calculated as follows, assuming that the
estimated year-specific coefficients are independent:

This eventually reduces down to:
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B.4.3 Emergency Room Visits for Asthma (Stieb et al., 1996, New Brunswick)

Stieb et al. (1996) examined the relationship between ER visits and air pollution for persons of all
ages in St. John, New Brunswick, Canada, from May through September in 1984-1992.  Ozone was
significantly linked to ER visits, especially when ozone levels exceeded 75 ppb.

The C-R function to estimate the change in asthma ER visits associated with daily changes in
ozone is:

where:
$ = ozone coefficient (Stieb et al., 1996, Table 2 linear model) = 0.0035
BasePop = baseline population in Saint John, New Brunswick (Stieb et al., 1996, p. 1354)  =

125,000
)O3 = change in the daily one-hour maximum ozone concentration (ppb)
pop = population of all ages
F$ = standard error of $ (Stieb et al., 1996, Table 2 linear model) = 0.0018

Correction for Double Counting.  Smith et al. (1997, p. 789) reported that in 1987 there were 445,000
asthma admissions and 1.2 million asthma ER visits. Assuming that all asthma hospital admissions pass
through the ER room, then 37% of ER visits end up as hospital admissions.  This percentage is then
subtracted from the estimated change in asthma-related ER visits.

B.5 Acute Morbidity

B.5.1 Asthma Attacks: Whittemore and Korn (1980)

Whittemore and Korn (1980) examined the relationship between air pollution and asthma attacks in
a survey of 443 children and adults, living in six communities in southern California during three 34-week
periods in 1972-1975.  The analysis focused on TSP and oxidants (Ox).  Respirable PM, NO2, SO2 were
highly correlated with TSP and excluded from the analysis. In a two pollutant model, daily levels of both
TSP and oxidants were significantly related to reported asthma attacks.  The results from this model were
used, and the oxidant result was adjusted below so it may be used with ozone data.



63The study used oxidant measurements in ppm (Whittemore and Korn, 1980, p.  688); these have been converted to ozone
measurements in ppb, assuming ozone comprises 90% of oxidants (i.e., 1.11*ozone=oxidant).  It is assumed that the harm of oxidants
is caused by ozone.  The view expressed in the Ozone Staff Paper (U.S. EPA, 1996a, p.164) is consistent with assuming that ozone is
the oxidant of concern at normal ambient concentrations: “Further, among the photochemical oxidants, the acute-exposure chamber,
field, and epidemiological human health data base raises concern only for O3 at levels of photochemical oxidants commonly reported
in ambient air.  Thus,  the staff recommends that O3 remain as the pollutant indicator for protection of public health from exposure to
all photochemical oxidants found in the ambient air.” 
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The C-R function to estimate the change in asthma attacks associated with a change in daily ozone
is:

where:
y0 = daily incidence of asthma attacks = 0.027 (Krupnick, 1988, p.  4-6)
$ = ozone coefficient = 0.00184
)O3 = change in daily one-hour maximum ozone concentration (ppb)
pop  = population of asthmatics of all ages = 5.61% of the population of all ages (Adams and Marano,

1995 Table 57).
F$ = standard error of $ = 0.000714

Incidence Rate.  The annual rate of 9.9 asthma attacks per astmatic is divided by 365 to get a daily rate. 
A figure of 9.9 is roughly consistent with the recent statement that “People with asthma have more than
100 million days of restricted activity” each year (National Heart, 1997).  This 100 million incidence figure
coupled with the 1996 population of 265,557,000 (U.S. Bureau of the Census, 1997, Table 2) and the
latest asthmatic prevalence rate of 5.61% (Adams and Marano, 1995, Table 57), suggest an annual asthma
attach rate per asthmatic of 6.7. 

Coefficient Estimate ($$).  Based on a model with TSP, the daily one-hour ozone coefficient is based on an
oxidant coefficient (1.66) estimated from data expressed in ppm (Whittemore and Korn, 1980, Table 5):63

Standard Error (FF$$).  The standard error (F$) is calculated from the two-tailed p-value (<0.01) reported
by Whittemore and Korn (1980, Table 5), which implies a t-value of at least 2.576 (assuming a large
number of degrees of freedom).



64The study used a two-week average pollution concentration; the daily rate used here is assumed to be a reasonable
approximation.  The study used ozone measurements in µg/m3; a conversion of 1.96 µg/m3 = 1 ppb is assumed here.

65The calculation of the MRAD coefficient and its standard error is exactly analogous to the calculation done for the work-
loss days coefficient based on Ostro (1987).
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B.5.2 Minor Restricted Activity Days: Ostro and Rothschild (1989)

Ostro and Rothschild (1989) estimated the impact of PM2.5 on the incidence of minor restricted
activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national sample of the
adult working population, ages 18 to 65, living in metropolitan areas.  The annual national survey results
used in this analysis were conducted in 1976-1981.  Controlling for PM2.5, two-week average O3 has highly
variable association with RRADs and MRADs.  Controlling for O3, two-week average PM2.5 was
significantly linked to both health endpoints in most years.

The study is based on a “convenience” sample of individuals ages 18-65.  Applying the C-R
function to this age group is likely a slight underestimate, as it seems likely that elderly are at least as
susceptible to PM as individuals 65 and younger.  The elderly appear more likely to die due to PM
exposure than other age groups (e.g., Schwartz, 1994d, p. 30) and a number of studies have found that
hospital admissions for the elderly are related to PM exposures (e.g., Schwartz, 1994b; Schwartz, 1994c).

Using the results of the two-pollutant model, we developed separate coefficients for each year in
the analysis, which were then combined for use in this analysis.  The coefficient used in this analysis is a
weighted average of the coefficients in Ostro and Rothschild (1989), Table 4, using the inverse of the
variance as the weight.  The C-R function to estimate the change in the number of minor restricted activity
days (MRAD) associated with a change in daily O3 is:

where:
y0 = daily MRAD daily incidence rate per person = 0.02137
$ = inverse-variance weighted O3 coefficient = 0.00220
)O3 = change in daily one-hour maximum ozone concentration (ppb)64

pop = adult population aged 18 to 65
F$ = standard error of $ = 0.000658

Incidence Rate.  The annual incidence rate (7.8) provided by Ostro and Rothschild (1989, p. 243) was
divided by 365 to get a daily rate of 0.02137.

Coefficient Estimate ($$).  The coefficient used in the C-R function is a weighted average of the
coefficients in Ostro and Rothschild (1989, Table 4) using the inverse of the variance as the weight:65



66 The relationship estimated by Crocker and Horst between wages and ozone is a log-log relationship.  Therefore the
elasticity of wages with respect to ozone is a constant, equal to the coefficient of the log of ozone in the model.
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Standard Error (FF$$).  The standard error of the coefficient (F$) is calculated as follows, assuming that the
estimated year-specific coefficients are independent:

This reduces down to:

B.5.3 Worker Productivity: Crocker and Horst (1981)

To monetize benefits associated with increased worker productivity resulting from improved ozone
air quality, we used information reported in Crocker and Horst (1981) and summarized in EPA (1994). 
Crocker and Horst examined the impacts of ozone exposure on the productivity of outdoor citrus workers. 
The study measured productivity impacts as the change in income associated with a change in ozone
exposure, given as the elasticity of income with respect to ozone concentration (-0.1427).66  The reported
elasticity translates a ten percent reduction in ozone to a 1.4 percent increase in income.  Given the median
daily income for outdoor workers engaged in strenuous activity reported by the 1990 U.S. Census, $89.64
per day (1997$), a ten percent reduction in ozone yields about $1.26 in increased daily wages.  The median
daily income for outdoor workers is a national estimate, however.  We adjust this estimate to reflect
regional variations in income using a factor based on the ratio of national median household income divided
by a county’s median household income.  No information was available for quantifying the uncertainty
associated with the central valuation estimate.  Therefore, no uncertainty analysis was conducted for this
endpoint.

B.5.4 Any of 19 Respiratory Symptoms: Krupnick (1990)

Krupnick et al. (1990) estimated the impact of air pollution on the incidence of any of 19
respiratory symptoms or conditions in 570 adults and 756 children living in three communities in Los
Angeles, California from September 1978 to March 1979.  Krupnick et al. (1990) listed 13 specific
“symptoms or conditions”: head cold, chest cold, sinus trouble, croup, cough with phlegm, sore throat,
asthma, hay fever, doctor-diagnosed ear infection, flu, pneumonia, bronchitis, and bronchiolitis.  The other
six symptoms or conditions are not specified.



67Krupnick and Kopp (1988, p. 2-24) and ESEERCO (1994, p. V-32) used the same C-R functional form as that used here.

68Krupnick et al. (1990) used parts per hundred million (pphm) to measure ozone; the coefficient used here is based on ppb.

69The coefficient estimates are based on the sample of “adults,” and assumes that individuals 18 and older were considered
adult.  According to Krupnick et al. (1990, Table 1), about 0.6 percent of the study sample was over the age of 60.  This is a relatively
small fraction, so it is further assumed that the results do not apply to individuals over the age of 65.
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In their analysis, they included coefficient of haze (COH, a measure of particulate matter
concentrations), ozone, NO2, and SO2, and they used a logistic regression model that takes into account
whether a respondent was well or not the previous day.  A key difference between this and the usual logistic
model, is that the model they used includes a lagged value of the dependent variable.  In single-pollutant
models, daily O3, COH, and SO2 were significantly related to respiratory symptoms in adults.  Controlling
for other pollutants, they found that ozone was still significant.  The results were more variable for COH
and SO2, perhaps due to collinearity.  NO2 had no significant effect.  No effect was seen in children for any
pollutant.  The results from the two-pollutant model with COH and ozone are used to develop a C-R
function.

The C-R function used to estimate the change in ARD2 associated with a change in daily one-hour
maximum ozone is based on Krupnick et al. (1990, p. 12):67

where:
$* = first derivative of the stationary probability = 0.000137
)O3 = change in daily one-hour maximum ozone concentration (ppb)68

pop = population aged 18-65 years old69

F$ = standard error of $* = 0.0000697

Coefficient Estimate ($$*).  The logistic regression model used by Krupnick et al. (1990) takes into account
whether a respondent was well or not the previous day.  Following Krupnick et al. (p. 12), the probability
that one is sick is on a given day is:

where: 
X = the matrix of explanatory variables
p0 = the probability of sickness on day t, given wellness on day t-1, and 
p1 = the probability of sickness on day t, given sickness on day t-1.  



70The model without NO2 (Krupnick et al., 1990, Table V equation 3) was used in this analysis, but the full suite of
coefficient estimates for this model were not reported.  Krupnick et al. (Table IV) reported all of the estimated coefficients for a model
of children and for a model of adults when four pollutants were included (ozone, COH, SO2, and NO2).  However, because of high
collinearity between NO2 and COH, NO2 was dropped from some of the reported analyses (Krupnick et al., p. 10), and the resulting
coefficient estimates changed substantially (see Krupnick et al., Table V).  Both the ozone and COH coefficients dropped by about a
factor of two or more. 

71The derivative result is reported by Krupnick et al. (1990, p.  12).
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In other words, the transition probabilities are estimated using a logistic function; the key difference
between this and the usual logistic model, is that the model includes a lagged value of the dependent
variable.

To calculate the impact of ozone (or other pollutants) on the probability of ARD2, it is possible, in
principle, to estimate ARD2 before the change in ozone and after the change:

However the full suite of coefficient estimates are not available.70  Rather than use the full suite of
coefficient values, the impact of ozone on the probability of ARD2 may be approximated by the derivative
of ARD2 with respect to ozone:71

where $ is the reported logistic regression coefficient for ozone. The change in the incidence of ARD2
associated with a given change in ozone is then estimated by:

This analysis uses transition probabilities obtained from Krupnick et al. as reported by ESEERCO
(1994, p. V-32) for the adult population: p1 = 0.7775 and p0 = 0.0468.  This implies:
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Standard Error (FF$$).  The standard error for the coefficient (F$)  is derived using the reported standard
error of the logistic regression coefficient in Krupnick et al. (1990, Table V):
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Appendix C:  Particulate Matter C-R Functions

Note that )PM is defined -- for all of the concentration-response (C-R) functions -- as PMbaseline -
PMcontrol, and that the change is defined to be: - (incidencecontrol - incidencebaseline).

C.1 Mortality

There are two types of exposure to PM that may result in premature mortality.  Short-term
exposure may result in excess mortality on the same day or within a few days of exposure.  Long-term
exposure over, say, a year or more, may result in mortality in excess of what it would be if PM levels were
generally lower, although the excess mortality that occurs will not necessarily be associated with any
particular episode of elevated air pollution levels.  In other words, long-term exposure may capture a facet
of the association between PM and mortality that is not captured by short-term exposure.

C.1.1 Mortality (Krewski et al., 2000) Based on ACS Cohort: Mean PM2.5

The C-R function to estimate the change in long-term mortality is:

where:
y0 = county-level all-cause annual death rate per person ages 30 and older
$ = PM2.5 coefficient = 0.0046257
)PM2.5 = change in annual mean PM2.5 concentration
pop = population of ages 30 and older
F$ = standard error of $ = 0.0012046

Incidence Rate.  To estimate county-specific baseline mortality incidence among individuals ages 30 and
over, this analysis used the average annual all-cause county mortality rate from 1994 through 1996 (U.S.
Centers for Disease Control, 1999).  Note that the Krewski et al. (2000) replication of Pope et al. (1995)
used the same all-cause mortality when estimating the impact of PM.

Coefficient Estimate ($$).  The coefficient ($) is estimated from the relative risk (1.12) associated with a
change in mean exposure of 24.5 µg/m3 (based on the range from the original ACS study) (Krewski et al.,
2000, Part II - Table 31).
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Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Krewski et al., 2000, Part II - Table 31). 

C.1.2 Mortality (Krewski et al., 2000), Based on ACS Cohort: Median PM2.5

The C-R function to estimate the change in long-term mortality is:

where:
y0 = county-level all-cause annual death rate per person ages 30 and older
$ = PM2.5 coefficient = 0.0053481
)PM2.5 = change in annual median PM2.5 concentration
pop = population of ages 30 and older
F$ = standard error of $ = 0.0014638

Incidence Rate.  To estimate county-specific baseline mortality incidence among individuals ages 30 and
over, this analysis used the average annual county mortality rate from 1994 through 1996 (U.S. Centers for
Disease Control, 1999).  Note that the Krewski et al. (2000) replication of Pope et al. (1995) used the same
all-cause mortality when estimating the impact of PM.

Coefficient Estimate ($$).  The coefficient ($) is estimated from the relative risk (1.14) associated with a
change in median exposure of 24.5 µg/m3 (based on original ACS study) (Krewski et al., 2000, Part II -
Table 31):

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Krewski et al., 2000, Part II - Table 31):
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C.1.3 Mortality (Krewski et al., 2000), Based on ACS Cohort, Random Effects with Regional
Adjustment: Median PM2.5

The C-R function to estimate the change in long-term mortality is:

where:
y0 = county-level all-cause annual death rate per person ages 30 and older
$ = PM2.5 coefficient = 0.00605796
)PM2.5 = change in annual median PM2.5 concentration
pop = population of ages 30 and older
F$ = standard error of $ = 0.0033826

Incidence Rate.  To estimate county-specific baseline mortality incidence among individuals ages 30 and
over, this analysis used the average annual county mortality rate from 1994 through 1996 (U.S. Centers for
Disease Control, 1999).  Note that the Krewski et al. (2000) replication of Pope et al. (1995) used the same
all cause mortality when estimating the impact of PM.

Coefficient Estimate ($$).  The coefficient ($) is estimated from the relative risk (1.16) associated with a
change in median exposure of 24.5 µg/m3 (based on original ACS study) (Krewski et al., 2000, Part II -
Table 46):

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Krewski et al., 2000, Part II - Table 46):
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C.1.4 Mortality (Krewski et al., 2000), Based on ACS Cohort, Random Effects with Independent
Cities: Median PM2.5

The C-R function to estimate the change in long-term mortality is:

where:
y0 = county-level all-cause annual death rate per person ages 30 and older
$ = PM2.5 coefficient = 0.0103936
)PM2.5 = change in annual median PM2.5 concentration
pop = population of ages 30 and older
F$ = standard error of $ = 0.0029021

Incidence Rate.  To estimate county-specific baseline mortality incidence among individuals ages 30 and
over, this analysis used the average annual county mortality rate from 1994 through 1996 (U.S. Centers for
Disease Control, 1999).  Note that the Krewski et al. (2000) replication of Pope et al. (1995) used the same
all cause mortality when estimating the impact of PM.

Coefficient Estimate ($$).  The coefficient ($) is estimated from the relative risk (1.29) associated with a
change in median exposure of 24.5 µg/m3 (based on original ACS study) (Krewski et al., 2000, Part II -
Table 46):

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Krewski et al., 2000, Part II - Table 46):
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C.1.5 Mortality (Pope et al., 1995), Based on ACS Cohort: Median PM2.5

The C-R function to estimate the change in long-term mortality is:

where:
y0 = county-level all-cause annual death rate per person ages 30 and older
$ = PM2.5 coefficient = 0.006408
)PM2.5 = change in annual median PM2.5 concentration
pop = population of ages 30 and older
F$ = standard error of $ = 0.001509

Incidence Rate.  To estimate county-specific baseline mortality incidence among individuals ages 30 and
over, this analysis used the average annual county mortality rate from 1994 through 1996 (U.S. Centers for
Disease Control, 1999).  Note that Pope et al. (1995) used all cause mortality when estimating the impact
of PM.

Coefficient Estimate ($$).  The coefficient ($) is estimated from the relative risk (1.17) associated with a
change in median exposure going from 9 µg/m3 to 33.5 µg/m3 (Pope et al., 1995, Table 2).

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Pope et al., 1995, Table 2). 
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C.1.6 Mortality  (Krewski et al., 2000), Based on Six-City Cohort: Mean PM2.5

The C-R function to estimate the change in long-term mortality is:

where:
y0 = county-level all-cause annual death rate per person ages 25 and older
$ = PM2.5 coefficient  = 0.013272
)PM2.5 = change in annual mean PM2.5 concentration
pop = population of ages 25 and older
F$ = standard error of $ = 0.004070

Incidence Rate.  To estimate county-specific baseline mortality incidence among individuals ages 25 and
over, this analysis used the average annual county mortality rate from 1994 through 1996 (U.S. Centers for
Disease Control, 1999).  The Krewski et al. (2000) reanalysis of Dockery et al. (1993, p. 1754) appears to
have used all-cause mortality when estimating the impact of PM.

Coefficient Estimate ($$).  The coefficient ($) is estimated from the relative risk (1.28) associated with a
change in mean exposure going from 11.0 µg/m3 to 29.6 µg/m3 (Krewski et al., 2000, Part I - Table 19c):

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Krewski et al., 2000, Part I - Table 19c): 
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C.1.7 Mortality (Dockery et al., 1993), Based on Six-City Cohort: Mean PM2.5

Dockery et al. (1993) examined the relationship between PM exposure and mortality in a cohort of
8,111 individuals aged 25 and older, living in six U.S. cities.  They surveyed these individuals in 1974-
1977 and followed their health status until 1991.  While they used a smaller sample of individuals from
fewer cities than the study by Pope et al., they used improved exposure estimates, a slightly broader study
population (adults aged 25 and older), and a follow-up period nearly twice as long as that of Pope et al.
(1995).  Perhaps because of these differences, Dockery et al. study found a larger effect of PM on
premature mortality than that found by Pope et al.

The C-R function to estimate the change in long-term mortality is:

where:
y0 = county-level all-cause annual death rate per person ages 25 and older
$ = PM2.5 coefficient  = 0.0124
)PM2.5 = change in annual mean PM2.5 concentration
pop = population of ages 25 and older
F$ = standard error of $ = 0.00423

Incidence Rate.   Dockery et al. (1993, p. 1754) appear to have used all-cause mortality when estimating
the impact of PM.  To estimate county-specific baseline mortality incidence among individuals ages 25 and
over, this analysis used the average all-cause annual county mortality rate from 1994 through 1996 (U.S.
Centers for Disease Control, 1999).

Coefficient Estimate ($$).  The coefficient ($) is estimated from the relative risk (1.26) associated with a
change in mean exposure going from 11.0 µg/m3 to 29.6 µg/m3 (Dockery et al., 1993, Tables 1 and 5):



72Schwartz et al. (1996, p. 929) defined non-accidental mortality as all-cause mortality less deaths due to accidents and other
external causes (ICD-9 codes: 800-999).  Other external causes includes suicide, homicide, and legal intervention (National Center for
Health Statistics, 1994).
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Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Dockery et al., 1993, Table 5): 

C.1.8 Short-Term Mortality (Schwartz et al., 1996)

Schwartz et al. (1996) pooled the results from six cities in the U.S. and found a significant
relationship between daily PM2.5 concentration and non-accidental mortality.72  Abt Associates Inc. (1996b,
p. 52) used the six PM2.5 relative risks reported by Schwartz et al. in a three-step procedure to estimate a
pooled PM2.5 coefficient and its standard error.  The first step estimates a random-effects pooled estimate of
$; the second step uses an “empirical Bayes” procedure to reestimate the $ for each study as a weighted
average of the $ reported for that location and the random effects pooled estimate; the third step estimates
the underlying distribution of $, and uses a Monte Carlo procedure to estimate the standard error (Abt
Associates Inc., 1996a, p. 65).

The C-R function to estimate the change in mortality associated with daily changes in PM2.5  is:

where:
y0 = county-level daily incidence for non-accidental deaths per person of any age
$ = PM2.5 coefficient (Abt Associates Inc., 1996a, Exhibit 7.2) = 0.001433  
)PM2.5 = change in daily average PM2.5 concentration
pop = population of all ages
F$ = standard error of $ (Abt Associates Inc., 1996a, Exhibit 7.2) = 0.000129

C.1.9 Neonatal Mortality (Woodruff et al., 1997)



73 Predicted neonatal mortality could not be added to the premature mortality predicted by the daily (short-term exposure)
mortality studies, however, because these studies cover all ages.  

74Post-neonatal refers to infants that are 28 days to 364 days old.

75Woodruff et al. (1997) used PM10 exposure in the first two months of an infant’s life.
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In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to 1991,
Woodruff et al. (1997) found a significant link between PM10 exposure in the first two months of an
infant’s life with the probability of dying between the ages of 28 days and 364 days.  PM10 exposure was
significant for all-cause mortality.  PM10 was also significant for respiratory mortality in average birth-
weight infants, but not low birth-weight infants.

In addition to the work by Woodruff et al., work in Mexico City (Loomis et al., 1999), the Czech
Republic (Bobak and Leon, 1992), Sao Paulo (Saldiva et al., 1994; Pereira et al., 1998), and Beijing
(Wang et al., 1997) provides additional evidence that particulate levels are significantly related to infant or
child mortality, low birth weight or intrauterine mortality.

Conceptually, neonatal or child  mortality could be added to the premature mortality predicted by
Pope et al. (1995), because the Pope function covers only the population over 30 years old.73  However, the
EPA Science Advisory Board recently advised the Agency not to include post-neonatal mortality in this
analysis because the study is of a new endpoint and the results have not been replicated in other studies
(U.S. EPA, 1999a, p.  12).  The estimated avoided incidences of neonatal mortality are estimated and
presented as a sensitivity analysis, and are not included in the primary analysis.

The C-R function to estimate the change in infant mortality is:

where:
y0 = county annual postneonatal74 infant deaths per infant under the age of one
$ = PM10 coefficient = 0.00392
)PM10 = change in annual average PM10 concentration75

pop = population of infants under one year old
F$ = standard error of $ = 0.00122

Coefficient Estimate ($$).  The estimated logistic coefficient ($) is based on the odds ratio (= 1.04)
associated with a 10 µg/m3 change in PM10 (Woodruff et al., 1997, Table 3).  The coefficient is calculated
as follows:

Standard Error (FF$$).  The standard error for the coefficient is calculated as the average of the standard
errors implied by the reported lower and upper bounds of the odds ratio (1.02 to 1.07) (Woodruff et al.,
1997, Table 3).  This reproduces both the lower and upper bounds of the odds ratio:



76 There are a limited number of studies that have estimated the impact of air pollution on chronic bronchitis.  An important
hindrance is the lack of health data and the associated air pollution levels over a number of years.  

77 Respiratory illness defined as a significant condition, coded by an examining physician as ICD-8 code 460-519.
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C.2 Chronic Morbidity

Schwartz (1993) and Abbey et al. (1993; 1995b) provide evidence that PM exposure over a
number of years gives rise to the development of chronic bronchitis in the U.S., and a recent study by
McDonnell et al. (1999) provides evidence that ozone exposure is linked to the development of asthma in
adults.  These results are consistent with research that has found chronic exposure to pollutants leads to
declining pulmonary functioning (Detels et al., 1991; Ackermann-Liebrich et al., 1997; Abbey et al.,
1998).76

We estimate the changes in the new cases of chronic bronchitis by pooling the estimates from the
studies by Schwartz (1993) and Abbey et al. (1995b).  The Schwartz study is somewhat older and uses a
cross-sectional design, however, it is based on a national sample, unlike the Abbey et al. study which is
based on a sample of California residents.

C.2.1 Chronic Bronchitis (Schwartz, 1993)

Schwartz (1993) examined survey data collected from 3,874 adults ranging in age from 30 to 74,
and living in 53 urban areas in the U.S.  The survey was conducted between 1974 and 1975, as part of the
National Health and Nutrition Examination Survey, and is representative of the non-institutionalized U.S.
population.  Schwartz (1993, Table 3) reported chronic bronchitis prevalence rates in the study population
by age, race, and gender.  Non-white males under 52 years old had the lowest rate (1.7%) and white males
52 years and older had the highest rate (9.3%).  The study examined the relationship between the
prevalence of reported chronic bronchitis, asthma, shortness of breath (dyspnea) and respiratory illness77,
and the annual levels of TSP, collected in the year prior to the survey (TSP was the only pollutant
examined in this study).  TSP was significantly related to the prevalence of chronic bronchitis, and
marginally significant for respiratory illness.  No effect was found for asthma or dyspnea.



78The conversion of TSP to PM10 is from ESEERCO (1994, p. V-5), who cited studies by EPA (1986) and the California
Air Resources Board (1982).
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Schwartz (1993) examined the prevalence of chronic bronchitis, not its incidence.  To use
Schwartz’s study and still estimate the change in incidence, there are at least two possible approaches.  The
first is to simply assume that it is appropriate to use the baseline incidence of chronic bronchitis in a C-R
function with the estimated coefficient from Schwartz’s study, to directly estimate the change in incidence. 
The second is to estimate the percentage change in the prevalence rate for chronic bronchitis using the
estimated coefficient from Schwartz’s study in a C-R function, and then to assume that this percentage
change applies to a baseline incidence rate obtained from another source.  (That is, if the prevalence
declines by 25 percent with a drop in PM, then baseline incidence drops by 25 percent with the same drop
in PM.)  This analysis is using the latter approach, and estimates a percentage change in prevalence which
is then applied to a baseline incidence rate.

The C-R function to estimate the change in chronic bronchitis is:

where:
y0 = national chronic bronchitis prevalence rate for individuals 18 and older (Adams and Marano,

1995, Table 62 and 78)  = 0.0535
z0 = annual bronchitis incidence rate per person (Abbey et al., 1993, Table 3) = 0.00378
$ = estimated PM10 logistic regression coefficient = 0.0123
)PM10 = change in annual average PM10 concentration
pop = population of ages 30 and older without chronic bronchitis = 0.9465*population 30+
F$ = standard error of $ = 0.00434  .

Prevalence Rate.  The national chronic bronchitis prevalence rate was not available for individuals 30 and
older.  Instead, we used the prevalence rate for individuals 18 and older (Adams and Marano, 1995, Table
62 and 78).  The 1994 national figures are the latest available, and are suggested here.

Incidence Rate.  The annual incidence rate is derived by taking the number of new cases (234), dividing by
the number of individuals in the sample (3,310), as reported by Abbey et al.(1993, Table 3), dividing by
the ten years covered in the sample, and then multiplying by one minus the reversal rate (the percentage of
reversals is estimated to be 46.6% based on Abbey et al. (1995a, Table 1)).  Using the same data base,
Abbey et al. (1995a, Table 1) reported the incidences by three age groups (25-54, 55-74, and 75+) for
“cough type” and “sputum type” bronchitis, but they did not report an overall incidence rate for bronchitis.

Coefficient Estimate ($$).  The estimated logistic coefficient ($) is based on the odds ratio (= 1.07)
associated with 10 µg/m3 change in TSP (Schwartz, 1993, p.  9).  Assuming that PM10 is 55 percent of
TSP78 and that particulates greater than ten micrometers are harmless, the coefficient is calculated as
follows:
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Standard Error (FF$$)  The standard error for the coefficient (F$) is calculated from the reported lower and
upper bounds of the odds ratio (1.02 to 1.12) (Schwartz, 1993, p.  9):

Population.  The study population in Schwartz (1993) includes 3,874 individuals over the age of 30, living
in 57 urban areas in the United States.  To what extent the study should be applied to individuals under the
age of 30 is unclear, and no effect is assumed for these individuals.

C.2.2 Chronic Bronchitis (Abbey et al., 1995b, California)

Abbey et al. (1995b) examined the relationship between estimated PM2.5 (annual mean from 1966
to 1977), PM10 (annual mean from 1973 to 1977) and TSP  (annual mean from 1973 to 1977) and the
same chronic respiratory symptoms in a sample population of 1,868 Californian Seventh Day Adventists. 
The initial survey was conducted in 1977 and the final survey in 1987.  To ensure a better estimate of
exposure, the study participants had to have been living in the same area for an extended period of time.  In
single-pollutant models, there was a statistically significant PM2.5 relationship with development of chronic
bronchitis, but not for AOD or asthma; PM10 was significantly associated with chronic bronchitis and
AOD; and TSP was significantly associated with all cases of all three chronic symptoms.  Other pollutants
were not examined.



79Using the same data set, Abbey et al. (1995a, p. 140)  reported that the respondents in 1977 ranged in age from 27 to 95.  
Chronic bronchitis prevalence from Adams and Marano (1995, Tables 62 and 78).
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The C-R function to estimate the change in chronic bronchitis is:

where:
y0 = annual bronchitis incidence rate per person (Abbey et al., 1993, Table 3) = 0.00378
$ = estimated PM2.5 logistic regression coefficient = 0.0132
)PM2.5 = change in annual average PM2.5 concentration
pop = population of ages 27 and older without chronic bronchitis79 = 0.9465*population 27+
F$ = standard error of $ = 0.00680

Incidence Rate.  The annual incidence rate is derived by taking the number of new cases (234), dividing by
the number of individuals in the sample (3,310), as reported by Abbey et al.(1993, Table 3), dividing by
the ten years covered in the sample, and then multiplying by one minus the reversal rate (estimated to be
46.6% based on Abbey et al. (1995a, Table 1)).  Using the same data base, Abbey et al. (1995a, Table 1)
reported the incidences by three age groups (25-54, 55-74, and 75+) for “cough type” and “sputum type”
bronchitis, but they did not report an overall incidence rate for bronchitis.

Coefficient Estimate ($$).  The estimated coefficient ($) is based on the relative risk (= 1.81) associated
with 45 µg/m3 change in PM2.5 (Abbey et al., 1995b, Table 2).  The coefficient is calculated as follows:

Standard Error (FF$$).  The standard error for the coefficient (F$) is calculated from the reported lower and
upper bounds of the relative risk (0.98 to 3.25) (Abbey et al., 1995b, Table 2):

C.3 Hospital Admissions



80The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit,
Minneapolis/St. Paul, Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.

81 Joel Schwartz (co-author), personal communication. 
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There is a wealth of epidemiological information on the relationship between air pollution and
hospital admissions for various respiratory and cardiovascular diseases; in addition, some studies have
examined the relationship between air pollution and emergency room (ER) visits.  Because most emergency
room visits do not result in an admission to the hospital -- the majority of people going to the ER are
treated and return home -- we treat hospital admissions and ER visits separately, taking account of the
fraction of ER visits that do get admitted to the hospital, as discussed below.  

Hospital admissions require the patient to be examined by a physician, and on average may
represent more serious incidents than ER visits (Lipfert, 1993, p. 230).  The two main groups of hospital
admissions estimated in this analysis are respiratory admissions and cardiovascular admissions.  There is
not much evidence linking air pollution with other types of hospital admissions.  The only types of ER
visits that have been linked to air pollution in the U.S. or Canada are asthma-related visits.

C.3.1 Hospital Admissions for COPD (Samet et al., 2000a, 14 Cities)

Samet et al. (2000a) examined the relationship between air pollution and hospital admissions for
individuals of ages 65 and over in 14 cities across the country.80  Cities were selected on the basis of
available air pollution data for at least four years between 1985 and 1994 during which at least 50% of
days had observations between the city-specific start and end of measurements.  Hospital admissions were
obtained from the Health Care Financing Administration (HCFA) for the years 1992 and 1993.  Poisson
regression was used in the analysis with unconstrained distributed lag models to examine the possibility
that air pollution affects hospital admissions on not only the same day but on later days as well.  The use of
unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk estimates
due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice of lag period to the
investigator’s discretion.  The C-R functions are based on the pooled estimate across all 14 cities, using the
unconstrained distributed lag model and fixed or random effects estimates, depending on the results of a
test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM10 on hospital admissions were
used.  The authors performed a second-stage regression to estimate the impact of SO2 and O3 on the PM10 -
hospitalization effect.  For ozone, the PM10 effect in each city was regressed on the correlation between
ozone and particulate matter (the slope of a PM10 vs. O3 regression) in that city.  The fitted line for this
regression will have a slope of zero if there is no relationship, meaning that the effect of PM10 is not
dependent on the correlation between PM10 and O3.  The adjusted point estimate was obtained by
determining the PM10 effect when the correlation between the pollutants is zero (i.e. the y-intercept of the
fitted line).  The effect of O3 adjustment on the PM10 - hospitalization relationship appeared to be minimal
except for the case of COPD.  In this case, adjustment increased the point estimate of the independent
particulate matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons, there
appeared to be little impact of O3 adjustment.81  Furthermore, the statistical power and robustness of this
second-stage approach to co-pollutant adjustment are in question because of the small number of
observations used in the regression (14 cities) and the potential for one or two observations to dramatically



82 Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the
morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”

83 ICD-9 codes 490-492 and 494-496.

84 The random effects estimate of the unconstrained distributed lag model was chosen for COPD admissions since the chi-
square test of heterogeneity was significant (see Samet et al., 2000, Part II - Table 15).  
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impact the results.82  Finally, for the case of COPD, adjustment led to an increased PM10 independent
effect, meaning that if the adjustment is valid, the impact on hospital admissions will be underestimated
rather than overestimated.

The C-R function to estimate the change in hospital admissions for COPD83 associated with daily
changes in PM10 is:

where:
y0 = daily hospital admission rate for COPD per person 65 and older = 3.12 E-5 
$ = PM10 coefficient = 0.00288
)PM10 = change in daily average PM10 concentration
pop = population age 65 and older
F$ = standard error of $ = 0.00139

Incidence Rate.  COPD hospital admissions (ICD-9 codes: 490-492, 494-496) are based on first-listed
discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (0.378 million) divided by the 1994 population of individuals 65 years and older
(33.162 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (Graves and Gillum, 1997, Table 1), and the population data are from U.S. Bureau of the Census
(1997, Table 14).

Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 2.88 percent increase in admissions
due to a PM10 change of 10.0 µg/m3 (Samet et al., 2000a, Part II - Table 14)84.  This translates to a relative
risk of 1.029.  The coefficient is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the percent increase (Samet et al., 2000a, Part II - Table 14):



85 ICD-9 codes 480-487.
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C.3.2 Hospital Admissions for Pneumonia (Samet et al., 2000a, 14 Cities)

The C-R function to estimate the change in hospital admissions for pneumonia85 associated with
daily changes in PM10 is:

where:
y0 = daily hospital admission rate for pneumonia per person 65 and older = 5.30 E-5 
$ = PM10 coefficient = 0.00207
)PM10 = change in daily average PM10 concentration
pop = population age 65 and older
F$ = standard error of $ = 0.00058

Incidence Rate.  Congestive heart failure hospital admissions (ICD-9 codes: 480-487) are based on first-
listed discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (0.642 million) divided by the 1994 population of individuals 65 years and older
(33.162 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (Graves and Gillum, 1997, Table 1), and the population data are from U.S. Bureau of the Census
(1997, Table 14).



86 The random effects estimate of the unconstrained distributed lag model was chosen for pneumonia admissions since the
chi-square test of heterogeneity was significant (see Samet et al., 2000, Part II - Table 15).  
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Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 2.07 percent increase in admissions
due to a PM10 change of 10.0 µg/m3 (Samet et al., 2000a, Part II - Table 14)86.  This translates to a relative
risk of 1.021.  The coefficient is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the percent increase (Samet et al., 2000a, Part II - Table 14):

C.3.3 Hospital Admissions for Asthma (Sheppard et al., 1999, Seattle)

Sheppard et al. (1999) studied the relation between air pollution in Seattle and nonelderly hospital
admissions for asthma from 1987 to 1994.  They used air quality data for PM10, PM2.5, coarse PM2.5-10,
SO2, ozone, and CO in a Poisson regression model with control for time trends, seasonal variations, and
temperature-related weather effects. They found asthma hospital admissions associated with PM10, PM2.5,
coarse PM2.5-10, CO, and ozone.  They did not observe an association for SO2. They found PM and CO to
be jointly associated with asthma admissions.  The best fitting model was found using ozone.  However,
ozone data was only available April through October, so they did not consider ozone further.  The C-R
function in this analysis is based on a two-pollutant model with CO and PM2.5.
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The C-R function to estimate the change in hospital admissions for asthma associated with daily
changes in PM2.5 is:

where:
y0 = daily hospital admission rate for asthma per person = 4.52 E-6
$ = PM2.5 coefficient = 0.00227
)PM2.5 = change in daily average PM2.5 concentration
pop = population of ages less than 65
F$ = standard error of $ = 0.000948

Incidence Rate.  Hospital admissions for asthma (ICD-9 code: 493) are based on first-listed discharge
figures for the latest available year, 1994.  The rate equals the annual number of first-listed diagnoses for
discharges (0.375 million) divided by the 1994 population (227.210 million), and then divided by 365 days
in the year.  The discharge figures are from Graves and Gillum (1997, Table 1), and the population data
are from U.S. Bureau of the Census (1997, Table 14).

Coefficient Estimate ($$).  Based on a model with CO, the daily average coefficient ($) is estimated from
the relative risk (1.03) associated with a change in PM2.5 exposure over the interquartile range of 8 to 21
µg/m3 (Sheppard et al., 1999, Table 3 and p. 28):

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the relative risk (Sheppard et al., 1999, p. 28):

C.3.4 Hospital Admissions for Cardiovascular Disease (Samet et al., 2000a, 14 Cities)



87 ICD-9 codes 390-429.

88 The fixed effects estimate of the unconstrained distributed lag model was chosen for CVD admissions since the chi-
square test of heterogeneity was non-significant (see Samet et al., 2000, Part II - Table 15).  
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The C-R function to estimate the change in hospital admissions for cardiovascular disease87

associated with daily changes in PM10 is:

where:
y0 = daily hospital admission rate for cardiovascular disease per person 65 and older = 2.23

E-4 
$ = PM10 coefficient = 0.00119
)PM10 = change in daily average PM10 concentration
pop = population age 65 and older
F$ = standard error of $ = 0.00011

Incidence Rate.  Congestive heart failure hospital admissions (ICD-9 codes: 390-429) are based on first-
listed discharge figures for the latest available year, 1994.  The rate equals the annual number of first-listed
diagnoses for discharges (2.695 million) divided by the 1994 population of individuals 65 years and older
(33.162 million), and then divided by 365 days in the year.  The discharge figures are from Graves and
Gillum (Graves and Gillum, 1997, Table 1), and the population data are from U.S. Bureau of the Census
(1997, Table 14).

Coefficient Estimate ($$).  The estimated coefficient ($) is based on a 1.19 percent increase in admissions
due to a PM10 change of 10.0 µg/m3 (Samet et al., 2000a, Part II - Table 14)88.  This translates to a relative
risk of 1.012.  The coefficient is calculated as follows:

Standard Error (FF$$).  The standard error (F$) was calculated as the average of the standard errors implied
by the reported lower and upper bounds of the percent increase (Samet et al., 2000a, Part II - Table 14):
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C.4 Emergency Room Visits

There is a wealth of epidemiological information on the relationship between air pollution and
hospital admissions for various respiratory and cardiovascular diseases; in addition, some studies have
examined the relationship between air pollution and ER visits.  Because most ER visits do not result in an
admission to the hospital -- the majority of people going to the ER are treated and return home -- we treat
hospital admissions and ER visits separately, taking account of the fraction of ER visits that do get
admitted to the hospital, as discussed below.

The only types of ER visit that have been explicitly linked to ozone in U.S. and Canadian
epidemiological studies are asthma visits.  However, it seems likely that ozone may be linked to other types
of respiratory-related ER visits.  

C.4.1 Emergency Room Visits for Asthma (Schwartz et al., 1993, Seattle)

Schwartz et al. (1993) examined the relationship between air quality and emergency room visits for
asthma in persons under 65 and 65 and over, living in Seattle from September 1989 to September 1990. 
Using single-pollutant models they found daily levels of PM10 linked to ER visits in individuals ages under
65, and they found no effect in individuals ages 65 and over.  They did not find a significant effect for SO2

and ozone in either age group.  The results of the single pollutant model for PM10 are used in this analysis.

The C-R function to estimate the change in daily emergency room visits for asthma associated with
daily changes in PM10 is:

where:
y0 = daily ER visits for asthma per person under 65 years old  = 7.69 E-6
$ = PM10 coefficient (Schwartz et al., 1993, p. 829) = 0.00367
)PM10 = change in daily average PM10 concentration
pop = population of ages 0-64
F$ = standard error of $ (Schwartz et al., 1993, p. 829) = 0.00126

Incidence Rate. Smith et al. (1997, p. 789) reported that in 1987 there were 445,000 asthma admissions
and 1.2 million asthma ER visits. Assuming that all asthma hospital admissions pass through the ER room,
then 37% of ER visits end up as hospital admissions.  As described below, the 1994 asthma admission rate
for people less than 65 is 4.522 E-6.  So one might assume, ER visits = (1/0.37)*asthma admission rate =
2.7*asthma admission rate = 1.22 E-5. Now, ER visits (subtracting out those visits that end up as
admissions)= 1.7*asthma admission rate = 7.69 E-6.



89 The original study measured PM2.1, however when using the study's results we use PM2.5.  This makes only a negligible
difference, assuming that the adverse effects of PM2.1 and PM2.5 are comparable.
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Asthma hospital admissions (ICD-9 code: 493) are based on first-listed discharge figures for the
latest available year, 1994.  The rate equals the annual number of first-listed diagnoses for discharges
(0.375 million) divided by the 1994 population of individuals under 65 years old (227.21 million), and then
divided by 365 days in the year.  The discharge figures are from Graves and Gillum (Graves and Gillum,
1997, Table 1), and the population data are from U.S. Bureau of the Census (1997, Table 14).

C.5 Acute Morbidity

In addition to chronic illnesses and hospital admissions, there is a considerable body of scientific
research that has estimated significant relationships between elevated air pollution levels and other
morbidity health effects.  Chamber study research has established relationships between specific air
pollution chemicals and symptoms such as coughing, pain on deep inspiration, wheezing, eye irritation and
headaches.  In addition, epidemiological research has found air pollution relationships with acute infectious
diseases (e.g., bronchitis, sinusitis) and a variety of “symptom-day” categories.  Some “symptom-day”
studies examine excess incidences of days with identified symptoms such as wheezing, coughing, or other
specific upper or lower respiratory symptoms.  Other studies estimate relationships for days with a more
general description of days with adverse health impacts, such as “respiratory restricted activity days” or
work loss days.

A challenge in preparing an analysis of the minor morbidity effects is identifying a set of effect
estimates that reflects the full range of identified adverse health effects but avoids double counting.  From
the definitions of the specific health effects examined in each research project, it is possible to identify a set
of effects that are non-overlapping, and can be ultimately treated as additive in a benefits analysis.

C.5.1 Acute Bronchitis C-R Function (Dockery et al., 1996)

Dockery et al. (1996) examined the relationship between PM and other pollutants on the reported
rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 children ages 8-12
living in 24 communities in U.S. and Canada.  Health data were collected in 1988-1991, and single-
pollutant models were used in the analysis to test a number of measures of particulate air pollution. 
Dockery et al. found that annual level of sulfates and particle acidity were significantly related  to
bronchitis, and PM2.1 and PM10 were marginally significantly related to bronchitis.89  They also found
nitrates were linked to asthma, and sulfates linked to chronic phlegm.  It is important to note that the study
examined annual pollution exposures, and the authors did not rule out that acute (daily) exposures could be
related to asthma attacks and other acute episodes.



90The unweighted average of the six city rates is 0.0647.

91In 1994, there were 13,707,000 restricted activity days associated with acute bronchitis, and 2,115,000 children (ages 5-
17) experienced acute conditions (Adams and Marano, 1995, Tables 6 and 21).  On average, then, each child with acute bronchitis
suffered 6.48 days.
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Earlier work, by Dockery et al. (1989), based on six U.S. cities, found acute bronchitis and chronic
cough significantly related to PM15.  Because it is based on a larger sample, the Dockery et al. (1996) study
is the better study to develop a C-R function linking PM2.5 with bronchitis.  The C-R function to estimate
the change in acute bronchitis is:

where:
y0 = annual bronchitis incidence rate per person  = 0.044
$ = estimated PM2.5 logistic regression coefficient = 0.0272
)PM2.5 = change in annual average PM2.5 concentration
pop = population of ages 8-12
F$ = standard error of $ = 0.0171

Incidence Rate.  Bronchitis was counted in the study only if there were “reports of symptoms in the past
12 months” (Dockery et al., 1996, p.  501).  It is unclear, however, if the cases of bronchitis are acute and
temporary, or if the bronchitis is a chronic condition.  Dockery et al. found no relationship between PM and
chronic cough and chronic phlegm, which are important indicators of chronic bronchitis.  For this analysis,
we assumed that the C-R function based on Dockery et al. is measuring acute bronchitis.

In 1994, 2,115,000 children ages 5-17 experienced acute conditions (Adams and Marano, 1995,
Table 6) out of population of 48.110 million children ages 5-17 (U.S. Bureau of the Census, 1998, Table
14), or 4.4 percent of this population.  This figure is somewhat lower than the 5.34 percent of children
under the age of 18 reported to have chronic bronchitis in 1990-1992 (Collins, 1997, Table 8).  Dockery et
al. (1996, p. 503) reported that in the 24 study cities the bronchitis rate varied from three to ten percent. 
Finally a weighted average of the incidence rates in the six cities in the Dockery et al. (1989) study is 6.34
percent , where the sample size from each city is used to weight the respective incidence rate (Dockery et
al., 1989, Tables 1 and 4).90   This analysis assumes a 4.4 percent prevalence rate is the most
representative of the national population.  Note that this measure reflects the fraction of children that have
a chest ailment diagnosed as bronchitis in the past year, not the number of days that children are adversely
affected by acute bronchitis.91

Coefficient Estimate ($$).  The estimated logistic coefficient ($) is based on the odds ratio (= 1.50)
associated with being in the most polluted city (PM2.1 = 20.7 µg/m3) versus the least polluted city (PM2.1 =
5.8 µg/m3) (Dockery et al., 1996, Tables 1 and 4).  The original study used PM2.1, however, we use the
PM2.1 coefficient and apply it to PM2.5 data.
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Standard Error (FF$$).  The standard error of the coefficient (F$) is calculated from the reported lower and
upper bounds of the odds ratio (Dockery et al., 1996, Table 4):

C.5.2 Upper Respiratory Symptoms (Pope et al., 1991)

Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a
variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah
Valley from December 1989 through March 1990.  The children in the Pope et al. study were asked to
record respiratory symptoms in a daily diary.  With this information, the daily occurrences of upper
respiratory symptoms (URS) and lower respiratory symptoms (LRS) were related to daily PM10

concentrations.  Pope et al. describe URS as consisting of one or more of the following symptoms:  runny
or stuffy nose; wet cough; and burning, aching, or red eyes.  Levels of ozone, NO2, and SO2 were reported
low during this period, and were not included in the analysis.  The sample in this study is relatively small
and is most representative of the asthmatic population, rather than the general population.  The school-
based subjects (ranging in age from 9 to 11) were chosen based on “a positive response to one or more of
three questions: ever wheezed without a cold, wheezed for 3 days or more out of the week for a month or
longer, and/or had a doctor say the ‘child has asthma’ (Pope et al., 1991, p. 669).”  The patient-based
subjects (ranging in age from 8 to 72) were receiving treatment for asthma and were referred by local
physicians.  Regression results for the school-based sample (Pope et al., 1991, Table 5) show PM10

significantly associated with both upper and lower respiratory symptoms.  The patient-based sample did
not find a significant PM10 effect.  The results from the school-based sample are used here.



92Adams (1995, Table 57) reported that in 1994, 6.91% of individuals under the age of 18 have asthma.
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The C-R function used to estimate the change in upper respiratory symptoms is:

where:
y0 = daily upper respiratory symptom incidence rate per person = 0.3419
$ = estimated PM10 logistic regression coefficient (Pope et al., 1991, Table 5) = 0.0036
)PM10 = change in daily average PM10 concentration
pop = asthmatic population92 ages 9 to 11 = 6.91% of population ages 9 to 11
F$ = standard error of $ (Pope et al., 1991, Table 5) = 0.0015

Incidence Rate.  The incidence rate is published in Pope et al. (Pope et al., 1991, Table 2).  Taking a
sample-size-weighted average, one gets an incidence rate of 0.3419.

C.5.3 Lower Respiratory Symptoms (Schwartz et al., 1994)

Schwartz et al. (1994)  used logistic regression to link lower respiratory symptoms in children with
SO2, NO2, ozone, PM10, PM2.5, sulfate and H+ (hydrogen ion).  Children were selected for the study if they
were exposed to indoor sources of air pollution: gas stoves and parental smoking.  The study enrolled 1,844
children into a year-long study that was conducted in different years (1984 to 1988) in six cities.  The
students were in grades two through five at the time of enrollment in 1984.  By the completion of the final
study, the cohort would then be in the eighth grade (ages 13-14); this suggests an age range of 7 to 14.

In single pollutant models SO2, NO2, PM2.5, and PM10 were significantly linked to cough.  In two-
pollutant models, PM10 had the most consistent relationship with cough; ozone was marginally significant,
controlling for PM10.  In models for upper respiratory symptoms, they reported a marginally significant
association for PM10.  In models for lower respiratory symptoms, they reported significant single-pollutant
models, using SO2, O3, PM2.5, PM10, SO4, and H+.

The C-R function used to estimate the change in lower respiratory symptoms is:

where:
y0 = daily lower respiratory symptom incidence rate per person = 0.0012
$ = estimated PM2.5 logistic regression coefficient = 0.01823
)PM2.5 = change in daily average PM2.5 concentration
pop = population of ages 7-14
F$ = standard error of $ = 0.00586



93For example, the 62.5th percentile would have an estimated incidence rate of 0.145 percent.
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Incidence Rate.  The proposed incidence rate, 0.12 percent, is based on the percentiles in Schwartz et al.
(Schwartz et al., 1994, Table 2).  They did not report the mean incidence rate, but rather reported various
percentiles from the incidence rate distribution.  The percentiles and associated values are 10th = 0 percent,
25th = 0 percent, 50th = 0 percent, 75th = 0.29 percent, and 90th = 0.34 percent.  The most conservative
estimate consistent with the data are to assume the incidence is zero up to the 75th percentile, a constant
0.29 percent between the 75th and 90th percentiles, and a constant 0.34 percent between the 90th and 100th

percentiles.  Alternatively, assuming a linear slope between the 50th and 75th, 75th and 90th, and 90th to 100th

percentiles, the estimated mean incidence rate is 0.12 percent,93 which is used in this analysis.

Coefficient Estimate ($$).  The coefficient $ is calculated from the reported odds ratio (= 1.44) in a single-
pollutant model associated with a 20 µg/m3 change in PM2.5 (Schwartz et al., 1994, Table 5):

Standard Error (FF$$).  The standard error for the coefficient (F$) is calculated from the reported lower and
upper bounds of the odds ratio (Schwartz et al., 1994, Table 5):

Population.  Schwartz et al. (1994, Table 5 and p. 1235) enrolled 1,844 children into a year-long study
that was conducted in different years in different cities; the students were in grades two through five and
lived in six U.S. cities.  All study participants were enrolled in September 1984; the actual study was
conducted in Watertown, MA in 1984/85; Kingston-Harriman, TN, and St. Louis, MO in 1985/86;
Steubenville, OH, and Portage, WI in 1986/87; and Topeka, KS in 1987/88.  The study does not publish
the age range of the children when they participated.  As a result, the study is somewhat unclear about the
appropriate age range for the resulting C-R function.  If all the children were in second grade in 1984 (ages
7-8) then the Topeka cohort would be in fifth grade (ages 10-11) when they participated in the study.  It
appears from the published description, however,  that the students were in grades two through five in



94Neas et al. (1994, p. 1091) used the same data set; their description suggests that grades two to five were represented
initially.

95The conversion of TSP to PM10 is from ESEERCO (1994, p. V-5), who cited studies by EPA (1986) and the California
Air Resources Board (1982).

Abt Associates Inc. December 2000Abt Associates Inc. C-26

β = =
0 00079

0 55
0 00144

.

.
. .

∆ ∆asthmaattacks
y

y e y
y popPM= −

− ⋅ +
−









 ⋅⋅

0

0 0
01 10( )

,β

1984.94  By the completion of the study, some students in the Topeka cohort would then be in the eighth
grade (ages 13-14); this suggests an age range of 7 to 14.

C.5.4 Asthma Attacks: Whittemore and Korn (1980)

Whittemore and Korn (1980) examined the relationship between air pollution and asthma attacks in
a survey of 443 children and adults, living in six communities in southern California during three 34-week
periods in 1972-1975.  The analysis focused on TSP and ozone.  Respirable PM, NO2, SO2 were highly
correlated with TSP and excluded from the analysis. In a two pollutant model, daily levels of both TSP and
Ox were significantly related to reported asthma attacks.

The C-R function to estimate the change in the number of asthma attacks is:

where:
y0 = daily incidence of asthma attacks = 0.027 (Krupnick, 1988, p.  4-6)
$ = PM10 coefficient = 0.00144
)PM10 = change in daily PM10 concentration
pop = population of asthmatics of all ages = 5.61% of the population of all ages (Adams and Marano,

1995 Table 57).
F$ = standard error of $ = 0.000556

Incidence Rate.  The annual rate of 9.9 asthma attacks per astmatic is divided by 365 to get a daily rate. 
A figure of 9.9 is roughly consistent with the recent statement that “People with asthma have more than
100 million days of restricted activity” each year (National Heart, 1997, p. 1). This 100 million incidence
figure coupled with the 1996 population of 265,557,000 (U.S. Bureau of the Census, 1997, Table 2) and
the latest asthmatic prevalence rate of 5.61% (Adams and Marano, 1995, Table 57), suggest an annual
asthma attach rate per asthmatic of 6.7. 

Coefficient Estimate ($$).  Based on a model with ozone, the coefficient is based on a TSP coefficient
(0.00079) (Whittemore and Korn, 1980, Table 5).  Assuming that PM10 is 55 percent of TSP95 and that
particulates greater than ten micrometers are harmless, the coefficient is calculated as follows:

Standard Error (FF$$).  The standard error (F$) is calculated from the two-tailed p-value (<0.01) reported
by Whittemore and Korn (1980, Table 5), which implies a t-value of at least 2.576 (assuming a large
number of degrees of freedom).



96The study used a two-week average pollution concentration; the daily rate used here is assumed to be a reasonable
approximation.  

97Ostro (1987) analyzed a sample aged 18 to 65.  It is assumed that the age 18-64 rate is a reasonably good approximation
to the rate for individuals 18-65.  Data are from U.S. Bureau of the Census (1997, Table 14) and Adams (1995, Table 41).
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C.5.5 Work Loss Days (Ostro, 1987)

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted
activity days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working
population, ages 18 to 65, living in metropolitan areas.  The annual national survey results used in this
analysis were conducted in 1976-1981.  Ostro reported that two-week average PM2.5 levels were
significantly linked to work-loss days, RADs, and RRADs, however there was some year-to-year
variability in the results.  Separate coefficients were developed for each year in the analysis (1976-1981);
these coefficients were pooled.  The coefficient used in the concentration-response function used here is a
weighted average of the coefficients in Ostro (1987, Table III) using the inverse of the variance as the
weight.

The study is based on a “convenience” sample of individuals ages 18-65.  Applying the C-R
function to this age group is likely a slight underestimate, as it seems likely that elderly are at least as
susceptible to PM as individuals 65 and younger.  The elderly appear more likely to die due to PM
exposure than other age groups (e.g., Schwartz, 1994d, p. 30) and a number of studies have found that
hospital admissions for the elderly are related to PM exposures (e.g., Schwartz, 1994b; Schwartz, 1994c). 
On the other hand, the number of workers over the age of 65 is relatively small; it was under 3% of the
total workforce in 1996 (U.S. Bureau of the Census, 1997, Table 633).

The C-R function to estimate the change in the number of work-loss days is:

where:
y0 = daily work-loss-day incidence rate per person = 0.00648
$ = inverse-variance weighted PM2.5 coefficient = 0.0046
)PM2.5 = change in daily average PM2.5 concentration96

pop = population of ages 18 to 65
F$ = standard error of $ = 0.00036

Incidence Rate.  The estimated 1994 annual incidence rate is the annual number (376,844,000) of WLD
per person in the age 18-64 population divided by the number of people in 18-64 population (159,361,000). 
The 1994 daily incidence rate is calculated as the annual rate divided by 365.97  Data are from U.S. Bureau
of the Census (1997, Table 14) and Adams (1995, Table 41).
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Coefficient Estimate ($$).  The coefficient used in the C-R function is a weighted average of the
coefficients in Ostro (1987, Table III) using the inverse of the variance as the weight:

Standard Error (FF$$).  The standard error of the coefficient (F$) is calculated as follows, assuming that the
estimated year-specific coefficients are independent:

This eventually reduces down to:

C.5.6 Minor Restricted Activity Days (Ostro and Rothschild, 1989)

Ostro and Rothschild (1989) estimated the impact of PM2.5 on the incidence of minor restricted
activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national sample of the
adult working population, ages 18 to 65, living in metropolitan areas.  The annual national survey results
used in this analysis were conducted in 1976-1981.  Controlling for PM2.5, two-week average O3 has highly
variable association with RRADs and MRADs.  Controlling for O3, two-week average PM2.5 was
significantly linked to both health endpoints in most years.

The study is based on a “convenience” sample of individuals ages 18-65.  Applying the C-R
function to this age group is likely a slight underestimate, as it seems likely that elderly are at least as
susceptible to PM as individuals 65 and younger.  The elderly appear more likely to die due to PM
exposure than other age groups (e.g., Schwartz, 1994d, p. 30) and a number of studies have found that
hospital admissions for the elderly are related to PM exposures (e.g., Schwartz, 1994b; Schwartz, 1994c).



98The study used a two-week average pollution concentration; the daily rate used here is assumed to be a reasonable
approximation. 
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Using the results of the two-pollutant model, we developed separate coefficients for each year in
the analysis, which were then combined for use in this analysis.  The coefficient used in this analysis is a
weighted average of the coefficients in Ostro and Rothschild (1989), Table 4, using the inverse of the
variance as the weight.  The C-R function to estimate the change in the number of minor restricted activity
days (MRAD) is:

where:
y0 = daily MRAD daily incidence rate per person = 0.02137
$ = inverse-variance weighted PM2.5 coeffcient = 0.00741
)PM2.5 = change in daily average PM2.5 concentration98

pop = adult population ages 18 to 65
F$ = standard error of $ = 0.0007

Incidence Rate.  The annual incidence rate (7.8) provided by Ostro and Rothschild (1989, p. 243) was
divided by 365 to get a daily rate of 0.02137.

Coefficient Estimate ($$).  The coefficient is a weighted average of the coefficients in Ostro and Rothschild
(1989, Table 4) using the inverse of the variance as the weight:



99Krupnick and Kopp (1988, p. 2-24) and ESEERCO (1994, p. V-32) used the same C-R functional form as that used here.

100Krupnick et al. (1990, Table 1) reported the age distribution in their complete data, but they did not report the ages of
individuals that were considered “adult.”  This analysis assumes that individuals 18 and older were considered adult.  Only a small
percentage (0.6%) of the study population is above the age of 60, so the C-R function was limited to the adult population up through
the age of 65.
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C.5.7 Any of 19 Respiratory Symptoms (Krupnick et al., 1990)

Krupnick et al. (1990) estimated the impact of air pollution on the incidence of any of 19
respiratory symptoms or conditions in 570 adults and 756 children living in three communities in Los
Angeles, California from September 1978 to March 1979.  Krupnick et al. (1990) listed 13 specific
“symptoms or conditions”: head cold, chest cold, sinus trouble, croup, cough with phlegm, sore throat,
asthma, hay fever, doctor-diagnosed ear infection, flu, pneumonia, bronchitis, and bronchiolitis.  The other
six symptoms or conditions are not specified.

In their analysis, they included COH, ozone, NO2, and SO2, and they used a logistic regression
model that takes into account whether a respondent was well or not the previous day.  A key difference
between this and the usual logistic model, is that the model they used includes a lagged value of the
dependent variable.  In single-pollutant models, daily O3, COH, and SO2 were significantly related to
respiratory symptoms in adults.  Controlling for other pollutants, they found that ozone was still
significant.  The results were more variable for COH and SO2, perhaps due to collinearity.  NO2 had no
significant effect.  No effect was seen in children for any pollutant.  The results from the two-pollutant
model with COH and ozone are used to develop a C-R function.

The C-R function used to estimate ARD2 is based on Krupnick et al. (1990, p. 12):99

where:
$* = first derivative of the stationary probability = 0.000461
)PM10 = change in daily average PM10 concentration
pop = population of ages 18-65 (Krupnick et al., 1990, Table 1)100

F$ = standard error of $* = 0.000239

Coefficient Estimate ($$*).  The logistic regression model used by Krupnick et al. (1990) takes into account
whether a respondent was well or not the previous day.  Following Krupnick et al. (p. 12), the probability
that one is sick is on a given day is:



101The model without NO2 (Krupnick et al., 1990, Table V equation 3) was used in this analysis, but the full suite of
coefficient estimates for this model were not reported.  Krupnick et al. (1990, Table IV) reported all of the estimated coefficients for a
model of children and for a model of adults when four pollutants were included (ozone, COH, SO2, and NO2).  However, because of
high collinearity between NO2 and COH, NO2 was dropped from some of the reported analyses (Krupnick et al., p. 10), and the
resulting coefficient estimates changed substantially (see Krupnick et al., 1990, Table IV).  Both the ozone and COH coefficients
dropped by about a factor of two or more. 
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where: 
X = the matrix of explanatory variables
p0 = the probability of sickness on day t, given wellness on day t-1, and 
p1 = the probability of sickness on day t, given sickness on day t-1.  

In other words, the transition probabilities are estimated using a logistic function; the key difference
between this and the usual logistic model, is that the model includes a lagged value of the dependent
variable.

To calculate the impact of COH (or other pollutants) on the probability of ARD2, it is possible, in
principle, to estimate ARD2 before the change in COH and after the change:

However the full suite of coefficient estimates are not available.101  Rather than use the full suite of
coefficient values, the impact of COH on the probability of probability of ARD2 may be approximated by
the derivative of ARD2 with respect to COH:

where $COH is the reported logistic regression coefficient for COH.  Since COH data are not available for
the benefits analysis, an estimated PM10 logistic regression coefficient is used based on the following
assumed relationship between PM10, COH, and TSP:
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This analysis uses $COH = 0.0088 (Krupnick et al., 1990, Table V equation 3).  The conversion

from COH to TSP is based on study-specific information provided to ESEERCO (1994, p. V-32).  The
conversion of TSP to PM10 is from also from ESEERCO (1994, p. V-5), which cited studies by EPA
(1986) and the California Air Resources Board (1982).

The change in the incidence of ARD2 associated with a given change in COH is then estimated by:

This analysis uses transition probabilities obtained from Krupnick et al. as reported by ESEERCO
(1994, p. V-32),  for the adult population: p1 = 0.7775 and p0 = 0.0468.  This implies:

Standard Error (FF$$).  The standard error for the coefficient (F$)  is derived using the reported standard
error of the logistic regression coefficient in Krupnick et al. (1990, Table V):
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C.5.8 Shortness of Breath (Ostro et al., 1995)

Using a logistic regression estimation, Ostro et al. (1995) estimated the impact of PM10, ozone,
NO2, and SO2 on the incidence of coughing, shortness of breath, and wheezing in 83 African-American
asthmatic children ages 7-12 living in Los Angeles from August through September 1992.  Regression
results show both PM10 and ozone significantly linked to shortness of breath; the beginning of an asthma
episode was also significantly linked to ozone.  No effect was seen for NO2 and SO2.  Results for single-
pollutant models only were presented in the published paper.

The C-R function to estimate the change in shortness of breath days is:

where:
y0 = daily shortness of breath incidence rate per person (Ostro et al., 1995, p. 715) = 0.056
$ = estimated PM10 logistic regression coefficient = 0.00841
)PM10 = change in daily average PM10 concentration
pop = asthmatic African-American population ages 7 to 12 = 6.91% of African-American population

ages 7 to 12
F$ = standard error of $ = 0.00363

Prevalence.  Adams (1995, Table 57) reported that in 1994, 6.91% of individuals under the age of 18 have
asthma.  It has been reported that African-Americans have a higher prevalence of asthma (e.g., see U.S.
EPA, 1996a). Ostro et al. (1995, p. 711) noted that “Although prevalence is only somewhat greater among
African-Americans than among whites, rates of morbidity are markedly higher.”  Indeed, the asthma rates
for whites and African-Americans were almost identical in 1994 (1995, Table 59), so no correction is made
to the estimated prevalence rate for asthma in African-Americans.

Coefficient Estimate ($$).  The estimated logistic coefficient ($) is based on the odds ratio of 1.60 (Ostro et
al., 1995, Table 3) associated with a change in mean PM10 of 55.87 µg/m3 (Ostro et al., 1995, Table 2). 
The coefficient is calculated as follows:
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Standard Error (FF$$).  The standard error for the coefficient (F$) is calculated from the reported lower and
upper bounds of the odds ratio (Ostro et al., 1995, Table 2):

C.5.9 Moderate (or Worse) Asthma (Ostro et al., 1991)

Ostro et al. (1991) examined the effect of air pollution on asthmatics, ages 18 to 70, living in
Denver, Colorado from December 1987 to February 1988.  The respondents in this study were asked to
record daily a subjective rating of their overall asthma status each day (0=none, 1=mild, 2=moderate,
3=severe, 4=incapacitating).  Ostro et al. then examined the relationship between moderate (or worse)
asthma and H+, sulfate, SO2, PM2.5, estimated PM2.5, PM10, nitrate, and nitric acid.  Daily levels of H+ were
linked to cough, asthma, and shortness of breath.  PM2.5 was linked to asthma.  Sulfate was linked to
shortness of breath.  No effects seen for other pollutants. The C-R function is based on a single-pollutant
linear regression model where the log of the pollutant is used.

The C-R function to estimate the change in the number of days with moderate (or worse) asthma is:

where:
$ = estimated PM2.5 coefficient (Ostro et al., 1991, Table 5) = 0.0006
PM2.5 = change in daily average PM2.5 concentration
pop = asthmatic population of all ages = 5.61% of the population of all ages (Adams and Marano,

1995 Table 57)
F$ = standard error of $ (Ostro et al., 1991, Table 5) = 0.0003

Coefficient Estimate ($$).  Two PM2.5 coefficients are presented, both equal 0.0006, however only one is
significant.  The coefficient based on data that does not include estimates of missing PM2.5 values is not
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significant (F$ =  0.0053); the coefficient that includes estimates of missing PM2.5 values (estimated using a
function of sulfate and nitrate) is significant at p < 0.5 (F$ =  0.0003).  The latter coefficient is used here.

Population.  The C-R function is applied to asthmatics of all ages, where it is assumed that 5.61 percent of
the population of all ages is asthmatic.  This raises two issues: the age group for which the function should
be used, and the fraction of the population that is asthmatic.  The study population consists of asthmatics
between the ages of 18 and 70.  It seems reasonable to assume that individuals over the age of 70 are at
least as susceptible as individuals in the study population.  It also seems reasonable to assume that
individuals under the age of 18 are also susceptible.  For example, controlling for oxidant levels,
Whittemore and Korn (1980) found TSP significantly related to asthma attacks in a study population
comprised primarily (59 percent) of individuals less than 16 years of age.

Standard Error (FF$$).  The standard error of the coefficient (F$) is calculated as follows, assuming that the
estimated year-specific coefficients are independent:

This reduces down to:


